Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33046497

ABSTRACT

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Subject(s)
Anti-Bacterial Agents , Proteomics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis , Bacterial Proteins/genetics , Tetracyclines
2.
Proc Natl Acad Sci U S A ; 111(14): E1409-18, 2014 Apr 08.
Article in English | MEDLINE | ID: mdl-24706874

ABSTRACT

Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Membrane Proteins/metabolism , Bacillus subtilis/metabolism , Binding Sites , Cytochromes c/metabolism , Homeostasis , Lipid Bilayers , Phospholipids/metabolism
3.
Beilstein J Org Chem ; 8: 1753-64, 2012.
Article in English | MEDLINE | ID: mdl-23209509

ABSTRACT

A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2-6 µM for RcCO-W(RW)(2) and 1-11 µM for (RW)(3) were determined. Interestingly, W(RW)(2)-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)(2)- and (RW)(3)-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)(2)-peptide versus killing kinetics of the (RW)(3) derivative showed faster reduction of the colony forming units for the RcCO-W(RW)(2)-peptide, although MIC values indicated higher activity for the (RW)(3)-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)(3) and 250 µg/mL for RcCO-W(RW)(2). In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)(3)-peptide had an IC(50) value of ~140 µM and the RcW(RW)(2) one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a membrane-based mode of action for these two peptides, each having different kinetic parameters.

4.
Proteomics ; 12(14): 2319-30, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22685012

ABSTRACT

Since multiresistant bacterial strains are more widespread and the victim numbers steadily increase, it is very important to possess a broad bandwidth of antimicrobial substances. Antibiotics often feature membrane-associated effect mechanisms. So, we present a membrane proteomic approach to shed light on the cellular response of Escherichia coli as model organism to the hexapeptide MP196, which is arginine and tryptophan rich. Analyzing integral membrane proteins are still challenging, although various detection strategies have been developed in the past. In particular, membrane proteomics in bacteria have been conducted very little due to the special physical properties of these membrane proteins. To obtain more information on the cellular response of the new compound group of small peptides, the tryptophan- and arginine-rich hexapeptide MP196 was subject to a comprehensive quantitative membrane proteomic study on E. coli by means of metabolic labeling in combination with membrane lipid analyses. This study provides in total 767 protein identifications including 185 integral membrane proteins, from which 624 could be quantified. Among these proteins, 134 were differentially expressed. Thereby, functional groups such as amino acid and membrane biosynthesis were affected, stress response could be observed, and the lipid composition of the membrane was significantly altered. Especially, the strong upregulation of the envelope stress induced protein. Spy indicates membrane damage, as well as the downregulation of the mechano-sensitive channel MscL beside others. Finally, the exceptional downregulation of transport systems strengthens these findings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Escherichia coli/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/analysis , Escherichia coli Proteins/metabolism , Membrane Lipids/analysis , Membrane Lipids/chemistry , Metabolic Networks and Pathways , Microbial Sensitivity Tests , Proteome/drug effects , Proteome/metabolism , Stress, Physiological/drug effects
5.
J Biol Inorg Chem ; 15(8): 1293-303, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20658302

ABSTRACT

Multiresistant bacteria are becoming more and more widespread. It is therefore necessary to have new compound groups in hand, such as small cationic peptides, to cope with these challenges. In this work, we present a comprehensive approach by monitoring protein expression profiles in a gram-positive bacterium (Corynebacterium glutamicum) to investigate the cellular response to such a compound, a ferrocene-conjugated arginine- and tryptophan-rich pentapeptide. To achieve this, a proteomic outline was performed where the compound-treated sample was compared with an untreated control. This study comprises more than 900 protein identifications, including numerous integral membrane proteins, and among these 185 differential expressions. Surprisingly, unregulated catalase and no elevated H(2)O(2) levels demonstrate that no oxidative stress occurs after treatment with the iron-containing compound as a consequence of the potential Fenton reaction. A sufficient iron supply is evidenced by the iron-containing protein aconitase and SufB (the latter belongs to an iron-sulfur cluster assembly system) and decreased levels of ATP-binding-cassette-type cobalamin/Fe(3+) siderophore transporters. The organometallic peptide antibiotic targets the cell membrane, which is evident by decreased levels of various integral membrane proteins, such as peptide permeases and transporters, and an altered lipid composition. Conversion to a more rigid cell membrane seems to be a relevant protective strategy of C. glutamicum against the ferrocene-conjugated antimicrobial peptide compound.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Corynebacterium glutamicum/drug effects , Ferrous Compounds/pharmacology , Peptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Membrane/chemistry , Cell Membrane/metabolism , Corynebacterium glutamicum/cytology , Corynebacterium glutamicum/metabolism , Dose-Response Relationship, Drug , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , Metallocenes , Molecular Conformation , Peptides/chemical synthesis , Peptides/chemistry , Proteomics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...