Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Inhal Toxicol ; 35(13-14): 333-349, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060410

ABSTRACT

INTRODUCTION: Exposures to particulate matter (PM) from combustion sources can exacerbate preexisting asthma. However, the cellular and molecular mechanisms by which PM promotes the exacerbation of asthma remain elusive. We used a house dust mite (HDM)-induced mouse model of asthma to test the hypothesis that inhaled DCB230, which are PM containing environmentally persistent free radicals (EPFRs), will aggravate asthmatic responses. METHODS: Groups of 8-10-week-old C57BL/6 male mice were exposed to either air or DCB230 aerosols at a concentration of 1.5 mg/m3 4 h/day for 10 days with or without prior HDM-induction of asthma. RESULTS: Aerosolized DCB230 particles formed small aggregates (30-150 nm). Mice exposed to DCB230 alone showed significantly reduced lung tidal volume, overexpression of the Muc5ac gene, and dysregulation of 4 inflammation related genes, Ccl11, Ccl24, Il-10, and Tpsb2. This suggests DCB230 particles interacted with the lung epithelium inducing mucous hypersecretion and restricting lung volume. In addition to reduced lung tidal volume, compared to respective controls, the HDM + DCB230-exposed group exhibited significantly increased lung tissue damping and up-regulated expression of Muc5ac, indicating that in this model, mucous hypersecretion may be central to pulmonary dysfunction. This group also showed augmented lung eosinophilic inflammation accompanied by an up-regulation of 36 asthma related genes. Twelve of these genes are part of IL-17 signaling, suggesting that this pathway is critical for DCB230 induced toxicity and adjuvant effects in lungs previously exposed to HDM. CONCLUSION: Our data indicate that inhaled DCB230 can act as an adjuvant, exacerbating asthma through IL-17-mediated responses in a HDM mouse model.


Subject(s)
Asthma , Pneumonia , Mice , Male , Animals , Particulate Matter/toxicity , Pyroglyphidae , Interleukin-17/toxicity , Mice, Inbred C57BL , Asthma/chemically induced , Asthma/genetics , Lung , Free Radicals/toxicity , Disease Models, Animal , Inflammation
2.
Toxicol Rep ; 11: 40-57, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37405056

ABSTRACT

Background: New fourth generation electronic nicotine delivery system (ENDS) devices contain high levels of nicotine salt (up to 60 mg/mL), whose cellular and molecular effects on immune cells are currently unknown. Here, we used a physiologically-relevant in vitro air-liquid interface (ALI) exposure model to assess the toxicity of distinct ENDS, a 3rd-generation electronic-cigarette (e-cig) and two 4th-generation ENDS devices (JUUL and Posh Plus). Methods: Murine macrophages (RAW 264.7) were exposed at the ALI to either air, Menthol or Crème Brûlée-flavored ENDS aerosols generated from those devices for 1-hour per day for 1 or 3 consecutive days. Cellular and molecular toxicity was evaluated 24 h post-exposure. Results: 1-day of Menthol-flavored JUUL aerosol exposure significantly decreased cell viability and significantly increased lactate dehydrogenase (LDH) levels compared to air controls. Further, JUUL Menthol elicited significantly increased reactive oxygen species (ROS) and nitric oxide (NO) production compared to air controls. Posh Crème Brûlée-flavored aerosols displayed significant cytotoxicity - decreased cell viability and increased LDH levels -after 1- and 3-day exposures, while the Crème Brûlée-flavored aerosol produced by the 3rd-generation e-cig device only displayed significant cytotoxicity after 3 days compared to air controls. Further, both Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited significantly increased ROS plus high levels of 8-isoprostane after 1 and 3 days compared to air controls, indicating increased oxidative stress. Posh and third-generation e-cig Crème Brûlée flavored-aerosols elicited reduction in NO levels after one day, but elicited increase in NO after 3 days. Genes in common dysregulated by both devices after 1 day included α7nAChR, Cyp1a1, Ahr, Mmp12, and iNos. Conclusion: Our results suggest that ENDS Menthol and Crème Brûlée-flavored aerosol exposures from both 3rd- and 4th-generation ENDS devices are cytotoxic to macrophages and cause oxidative stress. This can translate into macrophage dysfunction. Although 4th-generation disposable ENDS devices have no adjustable operational settings and are considered low-powered ENDS devices, their aerosols can induce cellular toxicity compared to air-exposed control cells. This study provides scientific evidence for regulation of nicotine salt-based disposable ENDS products.

3.
Ann Am Thorac Soc ; 20(1): 1-17, 2023 01.
Article in English | MEDLINE | ID: mdl-36584985

ABSTRACT

E-cigarette or vaping product use-associated lung injury (EVALI) is a severe pulmonary illness associated with the use of e-cigarettes or vaping products that was officially identified and named in 2019. This American Thoracic Society workshop was convened in 2021 to identify and prioritize research and regulatory needs to adequately respond to the EVALI outbreak and to prevent similar instances of disease associated with e-cigarette or vaping product use. An interdisciplinary group of 26 experts in adult and pediatric clinical care, public health, regulatory oversight, and toxicology were convened for the workshop. Four major topics were examined: 1) the public health and regulatory response to EVALI; 2) EVALI clinical care; 3) mechanisms contributing to EVALI; and 4) needed actions to address the health effects of EVALI. Oral presentations and group discussion were the primary modes used to identify top priorities for addressing EVALI. Initiatives including a national EVALI case registry and biorepository, integrated electronic medical record coding system, U.S. Food and Drug Administration regulation and enforcement of nicotine e-cigarette standards, regulatory authority over nontobacco-derived e-cigarettes, training in evaluating exogenous exposures, prospective clinical studies, standardized clinical follow-up assessments, ability to more readily study effects of cannabinoid e-cigarettes, and research to identify biomarkers of exposure and disease were identified as critical needs. These initiatives will require substantial federal investment as well as changes to regulatory policy. Overall, the workshop identified the need to address the root causes of EVALI to prevent future outbreaks. An integrated approach from multiple perspectives is required, including public health; clinical, basic, and translational research; regulators; and users of e-cigarettes. Improving the public health response to reduce the risk of another substantial disease-inducing event depends on coordinated actions to better understand the inhalational toxicity of these products, informing the public of the risks, and developing and enforcing regulatory standards for all e-cigarettes.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Injury , Vaping , Adult , Child , Humans , United States/epidemiology , Lung Injury/epidemiology , Lung Injury/etiology , Lung Injury/therapy , Prospective Studies , Disease Outbreaks , Nicotine , Vaping/adverse effects
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293318

ABSTRACT

Air pollution is a known environmental health hazard. A major source of air pollution includes diesel exhaust (DE). Initially, research on DE focused on respiratory morbidities; however, more recently, exposures to DE have been associated with neurological developmental disorders and neurodegeneration. In this study, we investigated the effects of sub-chronic inhalation exposure to DE on neuroinflammatory markers in two inbred mouse strains and both sexes, including whole transcriptome examination of the medial prefrontal cortex. We exposed aged male and female C57BL/6J (B6) and DBA/2J (D2) mice to DE, which was cooled and diluted with HEPA-filtered compressed air for 2 h per day, 5 days a week, for 4 weeks. Control animals were exposed to HEPA-filtered air on the same schedule as DE-exposed animals. The prefrontal cortex was harvested and analyzed for proinflammatory cytokine gene expression (Il1ß, Il6, Tnfα) and transcriptome-wide response by RNA-seq. We observed differential cytokine gene expression between strains and sexes in the DE-exposed vs. control-exposed groups for Il1ß, Tnfα, and Il6. For RNA-seq, we identified 150 differentially expressed genes between air and DE treatment related to natural killer cell-mediated cytotoxicity per Kyoto Encyclopedia of Genes and Genomes pathways. Overall, our data show differential strain-related effects of DE on neuroinflammation and neurotoxicity and demonstrate that B6 are more susceptible than D2 to gene expression changes due to DE exposures than D2. These results are important because B6 mice are often used as the default mouse model for DE studies and strain-related effects of DE neurotoxicity warrant expanded studies.


Subject(s)
Air Pollutants , Neurotoxicity Syndromes , Animals , Male , Female , Mice , Vehicle Emissions/toxicity , Air Pollutants/toxicity , Air Pollutants/analysis , Tumor Necrosis Factor-alpha , Interleukin-6 , Individuality , Mice, Inbred DBA , Mice, Inbred C57BL , Inhalation Exposure , Cytokines/genetics , Cytokines/metabolism , Genomics
5.
Toxicology ; 477: 153272, 2022 07.
Article in English | MEDLINE | ID: mdl-35878681

ABSTRACT

There are few reports concerning electronic nicotine delivery system (ENDS) use during pregnancy and no studies on asthma in prenatally JUUL-exposed offspring. Here, we tested the hypothesis that in utero JUUL exposure causes unfavorable birth outcomes and lasting pulmonary health effects in adult offspring. BALB/c dams were exposed to either air or mint-flavored JUUL aerosol, 1-hr/d, 20 consecutive days during gestation. Offspring were sacrificed on post-natal day (PND) 0 or at 11-week of age, following house dust mite (HDM) challenge. Gene expression was assessed in the uterine/placental tissue of the dams and lung responses were assessed in offspring at PND0 and at 11 weeks of age. JUUL-exposed offspring exhibited decreased body weights and lengths at PND0. These birth outcomes were accompanied by dysregulation of 54 genes associated with hypoxia and oxidative stress in the uterine/placental tissues of JUUL-exposed dams, as well as 24 genes in the lungs of the offspring related to Wnt signaling, plus 9 genes related to epigenetics, and 7 genes related to inflammation. At 11 weeks of age, JUUL + HDM exposed mice exhibited pulmonary inflammation when compared to their respective air + HDM controls. Additionally, the JUUL + HDM exposure dysregulated several genes associated with allergies and asthma. Further, the JUUL + HDM females showed decreased methylation of the promoter region of the Il10ra gene. Taken together, our mouse model shows that inhalation of JUUL aerosols during pregnancy affects the intrauterine environment, impairs lung development, and heightens the effects of allergic airway responses later in life.


Subject(s)
Asthma , Mentha , Prenatal Exposure Delayed Effects , Animals , Asthma/chemically induced , Disease Models, Animal , Female , Humans , Lung , Mice , Mice, Inbred BALB C , Placenta , Pregnancy , Pyroglyphidae , Respiratory Aerosols and Droplets
6.
Toxicol Res ; 38(2): 205-224, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35415078

ABSTRACT

Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-flavored e-cig aerosol (36 mg/mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifications in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-flavored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.

7.
Front Physiol ; 12: 704401, 2021.
Article in English | MEDLINE | ID: mdl-34912233

ABSTRACT

Matrix metalloproteinase-12 (Mmp12) is upregulated by cigarette smoke (CS) and plays a critical role in extracellular matrix remodeling, a key mechanism involved in physiological repair processes, and in the pathogenesis of emphysema, asthma, and lung cancer. While cigarette smoking is associated with the development of chronic obstructive pulmonary diseases (COPD) and lung cancer, in utero exposures to CS and second-hand smoke (SHS) are associated with asthma development in the offspring. SHS is an indoor air pollutant that causes known adverse health effects; however, the mechanisms by which in utero SHS exposures predispose to adult lung diseases, including COPD, asthma, and lung cancer, are poorly understood. In this study, we tested the hypothesis that in utero SHS exposure aggravates adult-induced emphysema, asthma, and lung cancer. Methods: Pregnant BALB/c mice were exposed from gestational days 6-19 to either 3 or 10mg/m3 of SHS or filtered air. At 10, 11, 16, or 17weeks of age, female offspring were treated with either saline for controls, elastase to induce emphysema, house-dust mite (HDM) to initiate asthma, or urethane to promote lung cancer. At sacrifice, specific disease-related lung responses including lung function, inflammation, gene, and protein expression were assessed. Results: In the elastase-induced emphysema model, in utero SHS-exposed mice had significantly enlarged airspaces and up-regulated expression of Mmp12 (10.3-fold compared to air-elastase controls). In the HDM-induced asthma model, in utero exposures to SHS produced eosinophilic lung inflammation and potentiated Mmp12 gene expression (5.7-fold compared to air-HDM controls). In the lung cancer model, in utero exposures to SHS significantly increased the number of intrapulmonary metastases at 58weeks of age and up-regulated Mmp12 (9.3-fold compared to air-urethane controls). In all lung disease models, Mmp12 upregulation was supported at the protein level. Conclusion: Our findings revealed that in utero SHS exposures exacerbate lung responses to adult-induced emphysema, asthma, and lung cancer. Our data show that MMP12 is up-regulated at the gene and protein levels in three distinct adult lung disease models following in utero SHS exposures, suggesting that MMP12 is central to in utero SHS-aggravated lung responses.

8.
Am J Physiol Heart Circ Physiol ; 321(4): H667-H683, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34415187

ABSTRACT

Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.NEW & NOTEWORTHY Particulate matter (PM) resulting from the combustion of organic matter is known to contribute to cardiopulmonary disease. Despite hypotheses that cardiovascular dysfunction occurring after PM exposures is secondary to lung or systemic inflammation, these studies investigating exposures to PM-containing environmentally persistent free radicals (EPFRs) demonstrate that cardiovascular dysfunction precedes pulmonary inflammation. The cardiopulmonary health consequences of EPFRs have yet to be thoroughly evaluated, especially in healthy, adult mice. Our data suggest the vasculature as a direct target of PM exposure, and our studies aimed to elucidate the mechanisms contributing to EPFR-induced vascular dysfunction.


Subject(s)
Aorta/drug effects , Cardiovascular Diseases/chemically induced , Endothelium, Vascular/drug effects , Environmental Pollutants/toxicity , Free Radicals/toxicity , Lung/drug effects , Particulate Matter/toxicity , Pneumonia/chemically induced , Animals , Aorta/metabolism , Aorta/physiopathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Dose-Response Relationship, Drug , Endothelin-1/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gene Expression Regulation , Inhalation Exposure , Lung/metabolism , Lung/physiopathology , Male , Mice, Inbred C57BL , Nitric Oxide/blood , Oxidative Stress , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/physiopathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Tidal Volume/drug effects , Time Factors
9.
Respir Res ; 21(1): 305, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33213456

ABSTRACT

BACKGROUND: Exposure to electronic-cigarette (e-cig) aerosols induces potentially fatal e-cig or vaping-associated lung injury (EVALI). The cellular and molecular mechanisms underlying these effects, however, are unknown. We used an air-liquid interface (ALI) in vitro model to determine the influence of two design characteristics of third-generation tank-style e-cig devices-resistance and voltage-on (1) e-cig aerosol composition and (2) cellular toxicity. METHODS: Human bronchial epithelial cells (H292) were exposed to either butter-flavored or cinnamon-flavored e-cig aerosols at the ALI in a Vitrocell exposure system connected to a third-generation e-cig device. Exposures were conducted following a standard vaping topography profile for 2 h per day, for 1 or 3 consecutive days. 24 h after ALI exposures cellular and molecular outcomes were assessed. RESULTS: We found that butter-flavored e-cig aerosol produced under 'sub-ohm' conditions (< 0.5 Ω) contains high levels of carbonyls (7-15 µg/puff), including formaldehyde, acetaldehyde and acrolein. E-cig aerosol produced under regular vaping conditions (resistance > 1 Ω and voltage > 4.5 V), contains lower carbonyl levels (< 2 µg/puff). We also found that the levels of carbonyls produced in the cinnamon-flavored e-cig aerosols were much lower than that of the butter-flavored aerosols. H292 cells exposed to butter-flavored or cinnamon-flavored e-cig aerosol at the ALI under 'sub-ohm' conditions for 1 or 3 days displayed significant cytotoxicity, decreased tight junction integrity, increased reactive oxygen species production, and dysregulated gene expression related to biotransformation, inflammation and oxidative stress (OS). Additionally, the cinnamon-flavored e-cig aerosol induced pro-oxidant effects as evidenced by increases in 8-hydroxy-2-deoxyguanosine protein levels. Moreover, we confirmed the involvement of OS as a toxicity process for cinnamon-flavored e-cig aerosol by pre-treating the cells with N-acetyl cysteine (NAC), an antioxidant that prevented the cells from the OS-mediated damage induced by the e-cig aerosol. CONCLUSION: The production of high levels of carbonyls may be flavor specific. Overall, inhaling e-cig aerosols produced under 'sub-ohm' conditions is detrimental to lung epithelial cells, potentially via mechanisms associated with OS. This information could help policymakers take the necessary steps to prevent the manufacturing of sub-ohm atomizers for e-cig devices.


Subject(s)
Bronchi/drug effects , Cytotoxins/toxicity , Electronic Nicotine Delivery Systems , Flavoring Agents/toxicity , Respiratory Mucosa/drug effects , Vaping/adverse effects , Aerosols , Antioxidants/pharmacology , Bronchi/cytology , Bronchi/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Gene Expression , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Respiratory Mucosa/metabolism
10.
Respir Res ; 21(1): 269, 2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33069224

ABSTRACT

BACKGROUD: JUUL, an electronic nicotine delivery system (ENDS), which first appeared on the US market in 2015, controled more than 75% of the US ENDS sales in 2018. JUUL-type devices are currently the most commonly used form of ENDS among youth in the US. In contrast to free-base nicotine contained in cigarettes and other ENDS, JUUL contains high levels of nicotine salt (35 or 59 mg/mL), whose cellular and molecular effects on lung cells are largely unknown. In the present study, we evaluated the in vitro toxicity of JUUL crème brûlée-flavored aerosols on 2 types of human bronchial epithelial cell lines (BEAS-2B, H292) and a murine macrophage cell line (RAW 264.7). METHODS: Human lung epithelial cells and murine macrophages were exposed to JUUL crème brûlée-flavored aerosols at the air-liquid interface (ALI) for 1-h followed by a 24-h recovery period. Membrane integrity, cytotoxicity, extracellular release of nitrogen species and reactive oxygen species, cellular morphology and gene expression were assessed. RESULTS: Crème brûlée-flavored aerosol contained elevated concentrations of benzoic acid (86.9 µg/puff), a well-established respiratory irritant. In BEAS-2B cells, crème brûlée-flavored aerosol decreased cell viability (≥ 50%) and increased nitric oxide (NO) production (≥ 30%), as well as iNOS gene expression. Crème brûlée-flavored aerosol did not affect the viability of either H292 cells or RAW macrophages, but increased the production of reactive oxygen species (ROS) by ≥ 20% in both cell types. While crème brûlée-flavored aerosol did not alter NO levels in H292 cells, RAW macrophages exposed to crème brûlée-flavored aerosol displayed decreased NO (≥ 50%) and down-regulation of the iNOS gene, possibly due to increased ROS. Additionally, crème brûlée-flavored aerosol dysregulated the expression of several genes related to biotransformation, inflammation and airway remodeling, including CYP1A1, IL-6, and MMP12 in all 3 cell lines. CONCLUSION: Our results indicate that crème brûlée-flavored aerosol causes cell-specific toxicity to lung cells. This study contributes to providing scientific evidence towards regulation of nicotine salt-based products.


Subject(s)
Aerosols/toxicity , Electronic Nicotine Delivery Systems , Flavoring Agents/toxicity , Macrophages/drug effects , Respiratory Mucosa/drug effects , Vaping/adverse effects , Aerosols/administration & dosage , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Flavoring Agents/administration & dosage , Humans , Macrophages/metabolism , Mice , RAW 264.7 Cells , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Vaping/metabolism
11.
Int J Mol Sci ; 21(17)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825651

ABSTRACT

The use of electronic nicotine delivery systems (ENDS), also known as electronic-cigarettes (e-cigs), has raised serious public health concerns, especially in light of the 2019 outbreak of e-cig or vaping product use-associated acute lung injury (EVALI). While these cases have mostly been linked to ENDS that contain vitamin E acetate, there is limited research that has focused on the chronic pulmonary effects of the delivery vehicles (i.e., without nicotine and flavoring). Thus, we investigated lung function and immune responses in a mouse model following exposure to the nearly ubiquitous e-cig delivery vehicles, vegetable glycerin (VG) and propylene glycol (PG), used with a specific 70%/30% ratio, with or without vanilla flavoring. We hypothesized that mice exposed sub-acutely to these e-cig aerosols would exhibit lung inflammation and altered lung function. Adult female C57BL/6 mice (n = 11-12 per group) were exposed to filtered air, 70%/30% VG/PG, or 70%/30% VG/PG with a French vanilla flavoring for 2 h a day for 6 weeks. Prior to sacrifice, lung function was assessed. At sacrifice, broncho-alveolar lavage fluid and lung tissue were collected for lipid mediator analysis, flow cytometry, histopathology, and gene expression analyses. Exposures to VG/PG + vanilla e-cig aerosol increased lung tidal and minute volumes and tissue damping. Immunophenotyping of lung immune cells revealed an increased number of dendritic cells, CD4+ T cells, and CD19+ B cells in the VG/PG-exposed group compared to air, irrespective of the presence of vanilla flavoring. Quantification of bioactive lung lipids demonstrated a >3-fold increase of 2-arachidonoylglycerol (2-AG), an anti-inflammatory mediator, and a 2-fold increase of 12-hydroxyeicosatetraenoic acid (12-HETE), another inflammatory mediator, following VG/PG exposure, with or without vanilla flavoring. This suggests that e-cig aerosol vehicles may affect immunoregulatory molecules. We also found that the two e-cig aerosols dysregulated the expression of lung genes. Ingenuity Pathway Analysis revealed that the gene networks that are dysregulated by the VG/PG e-cig aerosol are associated with metabolism of cellular proteins and lipids. Overall, our findings demonstrate that VG and PG, the main constituents of e-liquid formulations, when aerosolized through an e-cig device, are not harmless to the lungs, since they disrupt immune homeostasis.


Subject(s)
Electronic Nicotine Delivery Systems , Flavoring Agents/toxicity , Pneumonia/chemically induced , Pneumonia/immunology , Animals , Disease Models, Animal , Female , Gene Expression/drug effects , Glycerol/administration & dosage , Glycerol/toxicity , Immunoglobulins/metabolism , Immunophenotyping , Inflammation Mediators/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Pneumonia/physiopathology , Propylene Glycol/administration & dosage , Propylene Glycol/toxicity , Respiratory Function Tests
12.
J Vis Exp ; (138)2018 08 25.
Article in English | MEDLINE | ID: mdl-30199038

ABSTRACT

Electronic-cigarette (e-cig) devices use heat to produce an inhalable aerosol from a liquid (e-liquid) composed mainly of humectants, nicotine, and flavoring chemicals. The aerosol produced includes fine and ultrafine particles, and potentially nicotine and aldehydes, which can be harmful to human health. E-cig users inhale these aerosols and, with the third-generation of e-cig devices, control design features (resistance and voltage) in addition to the choice of e-liquids, and the puffing profile. These are key factors that can significantly impact the toxicity of the inhaled aerosols. E-cig research, however, is challenging and complex mostly due to the absence of standardized assessments and to the numerous varieties of e-cig models and brands, as well as e-liquid flavors and solvents that are available on the market. These considerations highlight the urgent need to harmonize e-cig research protocols, starting with e-cig aerosol generation and characterization techniques. The current study focuses on this challenge by describing a detailed step-by-step e-cig aerosol generation technique with specific experimental parameters that are thought to be realistic and representative of real-life exposure scenarios. The methodology is divided into four sections: preparation, exposure, post-exposure analysis, plus cleaning and maintenance of the device. Representative results from using two types of e-liquid and various voltages are presented in terms of mass concentration, particle size distribution, chemical composition and cotinine levels in mice. These data demonstrate the versatility of the e-cig exposure system used, aside from its value for toxicological studies, as it allows for a broad range of computer-controlled exposure scenarios, including automated representative vaping topography profiles.


Subject(s)
Aerosols/analysis , Electronic Nicotine Delivery Systems/methods , Vaping/trends , Humans
13.
J Immunol ; 199(3): 1170-1183, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28667160

ABSTRACT

Secondhand smoke (SHS) exposure has been linked to the worsening of ongoing lung diseases. However, whether SHS exposure affects the manifestation and natural history of imminent pediatric muco-obstructive airway diseases such as cystic fibrosis remains unclear. To address these questions, we exposed Scnn1b transgenic (Scnn1b-Tg+) mice to SHS from postnatal day (PND) 3-21 and lung phenotypes were examined at PND22. Although a majority of filtered air (FA)-exposed Scnn1b-Tg+ (FA-Tg+) mice successfully cleared spontaneous bacterial infections by PND22, the SHS-exposed Scnn1b-Tg+ (SHS-Tg+) mice failed to resolve these infections. This defect was associated with suppressed antibacterial defenses, i.e., phagocyte recruitment, IgA secretion, and Muc5b expression. Whereas the FA-Tg+ mice exhibited marked mucus obstruction and Th2 responses, SHS-Tg+ mice displayed a dramatic suppression of these responses. Mechanistically, downregulated expression of IL-33, a stimulator of type II innate lymphoid cells, in lung epithelial cells was associated with suppression of neutrophil recruitment, IgA secretions, Th2 responses, and delayed bacterial clearance in SHS-Tg+ mice. Cessation of SHS exposure for 21 d restored previously suppressed responses, including phagocyte recruitment, IgA secretion, and mucous cell metaplasia. However, in contrast with FA-Tg+ mice, the SHS-Tg+ mice had pronounced epithelial necrosis, alveolar space consolidation, and lymphoid hyperplasia; indicating lagged unfavorable effects of early postnatal SHS exposure in later life. Collectively, our data show that early postnatal SHS exposure reversibly suppresses IL-33 levels in airspaces which, in turn, results in reduced neutrophil recruitment and diminished Th2 response. Our data indicate that household smoking may predispose neonates with muco-obstructive lung disease to bacterial exacerbations.


Subject(s)
Bacterial Infections/immunology , Lung Diseases, Obstructive/immunology , Tobacco Smoke Pollution/adverse effects , Animals , Animals, Newborn , Bacterial Infections/physiopathology , Bacterial Load , Cell Movement , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Cystic Fibrosis/physiopathology , Disease Models, Animal , Down-Regulation , Epithelial Cells/immunology , Epithelial Cells/pathology , Epithelial Sodium Channels/deficiency , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Female , Goblet Cells/pathology , Humans , Immunoglobulin A/immunology , Interleukin-33/genetics , Interleukin-33/immunology , Interleukin-33/metabolism , Lung/cytology , Lung/immunology , Lung/pathology , Lung Diseases, Obstructive/physiopathology , Mice , Mice, Transgenic , Mucin-5B , Mucus/metabolism , Neutrophils/immunology , Neutrophils/pathology , Neutrophils/physiology , Signal Transduction , Th2 Cells/immunology , Th2 Cells/pathology
14.
Environ Mol Mutagen ; 57(3): 190-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26859758

ABSTRACT

Exposures to environmental pollutants contribute to dysregulated microRNA (miRNA) expression profiles, which have been implicated in various diseases. Previously, we reported aggravated asthmatic responses in ovalbumin (OVA)-challenged adult mice that had been exposed in utero to second-hand smoke (SHS). Whether in utero SHS exposure dysregulates miRNA expression patterns in the adult asthma model has not been investigated. Pregnant BALB/c mice were exposed (days 6-19 of pregnancy) to SHS (10 mg/m(3)) or HEPA-filtered air. All offspring were sensitized and challenged with OVA (19-23 weeks) before sacrifice. RNA samples extracted from lung homogenates, were subjected to RNA sequencing (RNA-seq). RNA-seq identified nine miRNAs that were most significantly up-regulated by in utero SHS exposure. Among these nine, miR-155-5p, miR-21-3p, and miR-18a-5p were also highly correlated with pro-asthmatic Th2 cytokine levels in bronchoalveolar lavage fluid. Further analysis indicated that these up-regulated miRNAs shared common chromosome locations, particularly Chr 11C, with pro-asthmatic genes. These three miRNAs have also been characterized as oncogenic miRNAs (oncomirs). We cross-referenced miRNA-mRNA expression profiles and identified 16 tumor suppressor genes that were down-regulated in the in utero-exposed offspring and that are predicted targets of the up-regulated oncomirs. In conclusion, in utero SHS exposure activates pro-asthmatic genes and miRNAs, which colocalize at specific chromosome locations, in OVA-challenged adult mice. The oncogenic characteristics of the miRNAs and putative miRNA-mRNA regulatory networks suggest that the synergistic effect of in utero SHS exposure and certain adult irritants may promote an oncogenic milieu in mouse lungs via inhibition of miRNA-regulated tumor suppressor genes.


Subject(s)
Asthma/genetics , MicroRNAs/genetics , Prenatal Exposure Delayed Effects/genetics , Tobacco Smoke Pollution/adverse effects , Animals , Asthma/chemically induced , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Genes, Tumor Suppressor , Lung/drug effects , Lung/physiology , Male , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Ovalbumin/toxicity , Pregnancy , Sensitivity and Specificity , Sequence Analysis, RNA
15.
Am J Respir Cell Mol Biol ; 49(6): 1102-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23898987

ABSTRACT

Second-hand smoke (SHS) exposure in utero exacerbates adult responses to environmental irritants. We tested the hypothesis that effects of in utero SHS exposure on modulating physiological and transcriptome responses in BALB/c mouse lungs after ovalbumin (OVA) challenge extend well into adulthood, and that the responses show a sex bias. We exposed BALB/c mice in utero to SHS or filtered air (AIR), then sensitized and challenged all offspring with OVA from 19 to 23 weeks of age. At the end of the adult OVA challenge, we evaluated pulmonary function, examined histopathology, analyzed bronchoalveolar lavage fluid (BALF), and assessed gene expression changes in the lung samples. All groups exhibited lung inflammation and inflammatory cell infiltration. Pulmonary function testing (airway hyperresponsiveness [AHR], breathing frequency [f]) and BALF (cell differentials, Th1/Th2 cytokines) assessments showed significantly more pronounced lung responses in the SHS-OVA groups than in AIR-OVA groups (AHR, f; eosinophils, neutrophils; IFN-γ, IL-1b, IL-4, IL-5, IL-10, IL-13, KC/CXCL1, TNF-α), with the majority of responses being more pronounced in males than in females. SHS exposure in utero also significantly altered lung gene expression profiles, primarily of genes associated with inflammatory responses and respiratory diseases, including lung cancer and lung fibrosis. Altered expression profiles of chemokines (Cxcl2, Cxcl5, Ccl8, Ccl24), cytokines (Il1b, Il6, Il13) and acute phase response genes (Saa1, Saa3) were confirmed by qRT-PCR. In conclusion, in utero exposure to SHS exacerbates adult lung responses to OVA challenge and promotes a pro-asthmatic milieu in adult lungs; further, males are generally more affected by SHS-OVA than are females.


Subject(s)
Lung/immunology , Ovalbumin/immunology , Prenatal Exposure Delayed Effects/immunology , Tobacco Smoke Pollution/adverse effects , Acute-Phase Reaction/genetics , Animals , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/genetics , Bronchial Hyperreactivity/immunology , Chemokines/genetics , Chemokines/metabolism , Cytokines/genetics , Cytokines/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Ovalbumin/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Sex Characteristics , Up-Regulation
16.
Am J Respir Cell Mol Biol ; 47(6): 843-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22962063

ABSTRACT

In utero exposure to second-hand smoke (SHS) is associated with exacerbated asthmatic responses in children. We tested the hypothesis that in utero SHS will aggravate the lung responses of young adult mice re-exposed to SHS. We exposed Balb/c mice in utero to SHS (S) or filtered air (AIR; A), and re-exposed the male offspring daily from 11-15 weeks of age to either SHS (AS and SS) or AIR (AA and SA). After the adult exposures, we analyzed samples of bronchoalveolar lavage fluid (BALF), examined the results of histopathology, and assessed pulmonary function and gene expression changes in lung samples. In SS mice, compared with the other three groups (AA, AS, and SA), we found decreases in breathing frequency and increases in airway hyperresponsiveness (AHR), as well as low but significantly elevated concentrations of BALF proinflammatory cytokines (IL-1b, IL-6, and keratinocyte-derived chemokine). Lung morphometric analyses revealed enlarged airspaces and arteries in SA and SS mice compared with their in utero AIR counterparts, as well as increased collagen deposition in AS and SS mice. Unique gene expression profiles were found for in utero, adult, and combined exposures, as well as for mice with elevated AHR responses. The profibrotic metalloprotease genes, Adamts9 and Mmp3, were up-regulated in the SS and AHR groups, suggesting a role for in utero SHS exposure on the adult development of chronic obstructive pulmonary disease. Our results indicate that in utero exposures to environmentally relevant concentrations of SHS alter lung structure more severely than do adult SHS exposures of longer duration. These in utero exposures also aggravate AHR and promote a profibrotic milieu in adult lungs.


Subject(s)
Irritants/adverse effects , Lung/pathology , Maternal Exposure , Prenatal Exposure Delayed Effects , Tobacco Smoke Pollution/adverse effects , Animals , Arteries/pathology , Cytokines/genetics , Cytokines/metabolism , Female , Inflammation Mediators/metabolism , Lung/blood supply , Lung/metabolism , Lung/physiopathology , Male , Maternal-Fetal Exchange , Mice , Mice, Inbred BALB C , Oligonucleotide Array Sequence Analysis , Pregnancy , Transcriptome
17.
Am J Respir Cell Mol Biol ; 47(1): 104-11, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22362385

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality in the United States. The major cause of COPD is cigarette smoking. Extensive leukocyte influx into the lungs, mediated by chemokines, is a critical event leading to COPD. Although both resident and myeloid cells secrete chemokines in response to inflammatory stimuli, little is known about the role of epithelial-derived chemokines, such as CXC chemokine ligand (CXCL)5, in the pathogenesis of cigarette smoke-induced inflammation. To explore the role of CXCL5, we generated CXCL5 gene-deficient mice and exposed them to secondhand smoke (SHS) for 5 hours/day for 5 days/week up to 3 weeks (subacute exposure). We observed a reduced recruitment of leukocytes to the lungs of CXCL5(-/-) mice compared with their wild-type (WT) counterparts, and noted that macrophages comprised the predominant leukocytes recruited to the lungs. Irradiation experiments performed on CXCL5(-/-) or WT mice transplanted with WT or CXCL5(-/-) bone marrow revealed that resident but not hematopoietic cell-driven CXCL5 is important for mediating SHS-induced lung inflammation. Interestingly, we observed a significant reduction of monocyte chemotactic protein-1 (MCP-1/CC chemokine ligand 2) concentrations in the lungs of CXCL5(-/-) mice. The instillation of recombinant MCP-1 in CXCL5(-/-) mice reversed macrophage recruitment. Our results also show the reduced activation of NF-κB/p65 in the lungs, as well as the attenuated activation of C-Jun N-terminal kinase, p42/44, and p38 mitogen-activated protein kinases and the expression of intercellular adhesion molecule-1 in the lungs of SHS-exposed CXCL5(-/-) mice. Our findings suggest an important role for CXCL5 in augmenting leukocyte recruitment in SHS-induced lung inflammation, and provide novel insights into CXCL5-driven pathogenesis.


Subject(s)
Chemokine CXCL5/metabolism , Leukocytes/immunology , Lung/immunology , Lung/metabolism , Macrophages/immunology , Tobacco Smoke Pollution/adverse effects , Animals , Bone Marrow Cells , Chemokine CCL2/biosynthesis , Chemokine CXCL5/genetics , Cyclin-Dependent Kinases/biosynthesis , Environmental Exposure , Female , Inflammation/immunology , Inflammation/pathology , Intercellular Adhesion Molecule-1/biosynthesis , JNK Mitogen-Activated Protein Kinases/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/biosynthesis , Pulmonary Disease, Chronic Obstructive/immunology , Transcription Factor RelA/biosynthesis , Transcription Factors , Tumor Suppressor Protein p53/biosynthesis , p38 Mitogen-Activated Protein Kinases/biosynthesis , Cyclin-Dependent Kinase-Activating Kinase
18.
Am J Respir Cell Mol Biol ; 39(2): 198-207, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18367723

ABSTRACT

We previously described the physicochemical characteristics (particle size, adsorbed polynuclear aromatic hydrocarbons [PAHs], oxygen, and metal content) of butadiene soot (BDS) nanoparticles generated during incomplete combustion of the high-volume industrial petrochemical, 1,3-butadiene. We also demonstrated localization of BDS-delivered PAHs to lipid droplets of murine and human respiratory cells in vitro and up-regulation of biotransformation and oxidative stress responses in these cells. Here, the objective was to determine whether inhalation of BDS nanoparticles promotes up-regulation of Phase I biotransformation enzymes, oxidative stress responses, and inflammation in the lungs of mice. Female Balb/c mice exposed to BDS (5 mg/m(3), 4 h/d, 4 d) were killed immediately or 1 day after final exposure; bronchoalveolar lavage fluid (BALF) was collected from the lungs; total RNA was extracted from one lung and histopathology performed on the other. Histopathology and BALF analysis revealed particle-laden macrophages in airways of BDS-treated mice, accompanied by neutrophilia and epithelial damage. Microarray and qRT-PCR analyses revealed up-regulation of (1) aryl hydrocarbon receptor (AhR)-responsive genes: AhR repressor (Ahrr) and cytochrome P450 IA1 and IB1(Cyp1a1, Cyp1b1); (2) oxidative stress response genes: heme oxygenase 1 (Hmox1), nuclear factor erythroid-derived 2-like 2 (Nfe2l2), NADPH dehydrogenase quinone 1 (Nqo1), and glutathione peroxidase 2 (Gpx2); and (3) pro-inflammatory genes: interleukin-6 (IL-6), C-X-C motif ligand 2 (Cxcl2; analog to human IL-8) and ligand 3 (Cxcl3), and granulocyte chemotactic protein (Cxcl6). Inhalation of PAH-rich, petrochemical combustion-derived nanoparticles causes airway inflammation and induces expression of AhR-associated and oxidative stress response genes, as seen in vitro, plus pro-inflammatory genes.


Subject(s)
Air Pollutants/toxicity , Lung/drug effects , Nanoparticles/toxicity , Oxidative Stress/drug effects , Pneumonia/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Soot , Animals , Biomarkers/metabolism , Biotransformation , Bronchoalveolar Lavage Fluid/chemistry , Female , Gene Expression Profiling , Inhalation Exposure , Lung/metabolism , Lung/pathology , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred BALB C , Pneumonia/chemically induced , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
19.
Am J Respir Cell Mol Biol ; 38(5): 532-40, 2008 May.
Article in English | MEDLINE | ID: mdl-18079490

ABSTRACT

Combustion-generated radicals interact to form polynuclear aromatic hydrocarbons (PAHs), including carcinogens. PAHs aggregate into 20- to 50-nm particles, which extend into branched-chain structures (soots). Incomplete combustion yields black soot particles and black smoke. Many PAHs, including those in soots, fluoresce upon excitation. We have reported that butadiene soot (BDS), generated during combustion of the high-volume petrochemical 1,3-butadiene, serves as a reproducible example of combustion-derived fine and ultrafine particles, with the potential for acute or delayed health effects. Human bronchoepithelial cells (BEAS-2B) display time- and concentration-dependent responses to BDS exposure, culminating in concentration of fluorescent PAHs within discrete cytoplasmic bodies. Here we identify the cytoplasmic compartment(s) in which combustion-derived PAHs concentrate and assess the metabolic responses associated with this compartmentalization. BDS-associated fluorescence colocalized with a red fluorescent cholesterol analog and a transfected plasmid coding for a fluorescent lipid droplet surface protein within BEAS-2B cells. After BDS exposure, murine alveolar macrophages (MH-S) and adipocytes (3T3-L1) also develop fluorescence. These findings, especially within adipocytes, support the accumulation of PAHs within lipid droplets. Microarray data revealed up-regulation of aryl hydrocarbon receptor-induced Phase I biotransformation enzymes and nuclear erythroid-2 related factor 2-mediated oxidative stress responses in BEAS-2B cells. Quantitative RT-PCR results confirmed a time-dependent up-regulation of Phase I biotransformation enzymes (CYP1A1, CYP1B1, and ALDH3A1) in BDS-exposed BEAS-2B and MH-S cells. Thus, respiratory cell lipid droplets concentrate PAHs delivered by combustion-derived ultrafine particles. These PAHs, including several found in BDS and in cigarette smoke, activate xenobiotic metabolism pathways and thereby potentiate their toxicity.


Subject(s)
Epithelial Cells/metabolism , Lipid Metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , 3T3-L1 Cells , Animals , Bronchi/cytology , Bronchi/drug effects , Bronchi/metabolism , Butadienes/chemistry , Butadienes/metabolism , Butadienes/pharmacology , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Mice , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Aryl Hydrocarbon/physiology , Respiratory Mucosa/drug effects , Signal Transduction/drug effects , Soot/chemistry , Soot/metabolism , Time Factors
20.
Environ Health Perspect ; 115(12): 1757-66, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18087596

ABSTRACT

BACKGROUND: In utero environmental tobacco smoke (ETS) exposure exacerbates initial lung responses of adult mice to ovalbumin (OVA), a common allergen in rodent models of allergic asthma. OBJECTIVE: We tested the hypothesis that in utero ETS exposure alters expression of genes (including asthma-related and inflammatory genes) in the lungs of adult mice and that this differential expression is reflected in differential respiratory and immune responses to nontobacco allergens. METHODS: Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in lungs of BALB/c mice exposed to ETS in utero, OVA, or saline aerosol at weeks 7-8, and OVA sensitization and challenge at weeks 11-15. Data sets were filtered by transcript p-value (< or = 0.05), false discovery rate (< or = 0.05), and fold change (> or = 1.5). Differential expression of selected genes was confirmed by polymerase chain reaction (PCR). RESULTS: Genes differentially expressed as a result of in utero ETS exposure are involved in regulation of biological processes (immune response, cell proliferation, apoptosis, cell metabolism) through altered cytoskeleton, adhesion, transcription, and enzyme molecules. A number of genes prominent in lung inflammation were differentially expressed on PCR but did not pass selection criteria for microarray, including arginase (Arg1), chitinases (Chia, Chi3l3, Chi3l4), eotaxins (Ccl11, Ccl24), small proline-rich protein 2a (Sprr2a), and cytokines (Il4, Il6, Il10, Il13, Tnfa) . CONCLUSION: The differential lung gene expression reported here is consistent with previously reported functional changes in lungs of mice exposed in utero to ETS and as adults to the nontobacco allergen OVA.


Subject(s)
Gene Expression Regulation/drug effects , Lung/drug effects , Lung/metabolism , Prenatal Exposure Delayed Effects , Tobacco Smoke Pollution/adverse effects , Animals , Asthma/genetics , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Profiling , Gene Regulatory Networks , Mice , Mice, Inbred BALB C , Microarray Analysis , Ovalbumin , Pregnancy , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...