Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Microbiol ; 2012: 156537, 2012.
Article in English | MEDLINE | ID: mdl-22319534

ABSTRACT

Crude oil samples with high- and low-water content from two offshore platforms (PA and PB) in Campos Basin, Brazil, were assessed for bacterial communities by 16S rRNA gene-based clone libraries. RDP Classifier was used to analyze a total of 156 clones within four libraries obtained from two platforms. The clone sequences were mainly affiliated with Gammaproteobacteria (78.2% of the total clones); however, clones associated with Betaproteobacteria (10.9%), Alphaproteobacteria (9%), and Firmicutes (1.9%) were also identified. Pseudomonadaceae was the most common family affiliated with these clone sequences. The sequences were further analyzed by MOTHUR, yielding 81 operational taxonomic units (OTUs) grouped at 97% stringency. Richness estimators also calculated by MOTHUR indicated that oil samples with high-water content were the most diverse. Comparison of bacterial communities present in these four samples using LIBSHUFF and Principal Component Analysis (PCA) indicated that the water content significantly influenced the community structure only of crude oil obtained from PA. Differences between PA and PB libraries were observed, suggesting the importance of the oil field as a driver of community composition in this habitat.

2.
Appl Microbiol Biotechnol ; 85(3): 791-800, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19830416

ABSTRACT

Biogenic souring and microbial-influenced corrosion is a common scenario in water-flooded petroleum reservoirs. Water injection systems are continuously treated to control bacterial contamination, but some bacteria that cause souring and corrosion can persist even after different treatments have been applied. Our aim was to increase our knowledge of the bacterial communities that persist in the water injection systems of three offshore oil platforms in Brazil. To achieve this goal, we used a culture-independent molecular approach (16S ribosomal RNA gene clone libraries) to analyze seawater samples that had been subjected to different treatments. Phylogenetic analyses revealed that the bacterial communities from the different platforms were taxonomically different. A predominance of bacterial clones affiliated with Gammaproteobacteria, mostly belonging to the genus Marinobacter (60.7%), were observed in the platform A samples. Clones from platform B were mainly related to the genera Colwellia (37.9%) and Achromobacter (24.6%), whereas clones obtained from platform C were all related to unclassified bacteria. Canonical correspondence analyses showed that different treatments such as chlorination, deoxygenation, and biocide addition did not significantly influence the bacterial diversity in the platforms studied. Our results demonstrated that the injection water used in secondary oil recovery procedures contained potentially hazardous bacteria, which may ultimately cause souring and corrosion.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biodiversity , Water Microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Brazil , Cluster Analysis , Corrosion , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Metagenomics , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
3.
J Ind Microbiol Biotechnol ; 35(4): 251-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18180965

ABSTRACT

Sulfide production by sulfate-reducing bacteria (SRB) is a major concern for the petroleum industry since it is toxic and corrosive, and causes plugging due to the formation of insoluble iron sulfides (reservoir souring). In this study, PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) using two sets of primers based on the 16S rRNA gene and on the aps gene (adenosine-5-phosphosulfate reductase) was used to track changes in the total bacterial and SRB communities, respectively, present in the water-oil tank system on an offshore platform in Brazil in which nitrate treatment was applied for 2 months (15 nitrate injections). PCR-DGGE analysis of the total bacterial community showed the existence of a dominant population in the water-oil tank, and that the appearance and/or the increase of intensity of some bands in the gels were not permanently affected by the introduction of nitrate. On the other hand, the SRB community was stimulated following nitrate treatment. Moreover, sulfide production did not exceed the permissible exposure limit in the water-oil separation tank studied treated with nitrate. Therefore, controlling sulfide production by treating the produced water tank with nitrate could reduce the quantity of chemical biocides required to control microbial activities.


Subject(s)
Electrophoresis , Fuel Oils/microbiology , Nitrates/pharmacology , Polymerase Chain Reaction , Sulfur-Reducing Bacteria/classification , Sulfur-Reducing Bacteria/metabolism , Brazil , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Oxidoreductases Acting on Sulfur Group Donors/genetics , RNA, Ribosomal, 16S/genetics , Sulfides/metabolism , Sulfur-Reducing Bacteria/genetics , Sulfur-Reducing Bacteria/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...