Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Inhal Toxicol ; 22 Suppl 2: 48-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21029031

ABSTRACT

There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.


Subject(s)
Air Pollutants/toxicity , Biofuels/toxicity , Gasoline/toxicity , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Vehicle Emissions/toxicity , Animals , Catalysis , Cell Line , Chemokine CXCL2/metabolism , Comet Assay , Cytotoxicity Tests, Immunologic , Inflammation/metabolism , Mice , Mutagenicity Tests , Oxidative Stress , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
2.
Inhal Toxicol ; 21(12): 994-1006, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19772479

ABSTRACT

Epidemiological studies show heterogeneities in the particulate pollution-related exposure-effect relationships among cardiorespiratory patients, but the connection to chemical composition and toxic properties of the inhaled particles is largely unknown. To identify the chemical constituents and sources responsible for the diverse inflammatory and cytotoxic effects of urban air, fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples were collected during contrasting air pollution situations. We exposed mouse RAW 246.7 macrophages for 24 hrs to PM(2.5-0.2) and PM(10-2.5) samples from six European cities. The concentrations of proinflammatory cytokines (IL-6, TNFalpha), chemokine (MIP-2), and nitric oxide were measured from the cell culture medium, and the cytotoxicity was assayed. Spearman's correlations between the chemical constituents and cellular responses were analyzed. In the PM(2.5-0.2) size range, the tracers of photo-oxidation of organics in the atmosphere (oxalate, succinate, malonate), some transition metals (Ni, V, Fe, Cu, Cr), and insoluble soil constituents (Ca, Al, Fe, Si) correlated positively with the response parameters. In contrast, the tracers of incomplete biomass (monosaccharide anhydrides) and coal (As) combustion, and polycyclic aromatic hydrocarbons (PAHs), had negative correlations with the inflammatory activity. The compositions of PM(10-2.5) samples were more uniform and there were only occasional high correlations between the chemical constituents, endotoxin, and the response parameters. The present results suggest that the local sources of incomplete combustion and resuspended road dust are important producers of harmful fine particulate constituents that may, however, operate via diverse toxicity mechanisms. The results agree well with our recent findings in the mouse lung.


Subject(s)
Air Pollutants/toxicity , Inflammation/chemically induced , Macrophages/drug effects , Particulate Matter/toxicity , Air Pollutants/analysis , Animals , Cell Line , Cell Survival/drug effects , Chemokines/biosynthesis , Coloring Agents , Cytokines/biosynthesis , Europe , Inflammation/pathology , Mice , Nitric Oxide/biosynthesis , Particle Size , Particulate Matter/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Tetrazolium Salts , Thiazoles , Tumor Necrosis Factor-alpha/metabolism , Water/analysis
3.
Inhal Toxicol ; 20(14): 1215-31, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18855153

ABSTRACT

Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.


Subject(s)
Air Pollutants/adverse effects , Air Pollutants/chemistry , Particle Size , Particulate Matter/adverse effects , Particulate Matter/chemistry , Air Pollution , Animals , Europe , Fuel Oils/adverse effects , Male , Metals/adverse effects , Metals/chemistry , Mice , Mice, Inbred C57BL , Organic Chemicals/adverse effects , Organic Chemicals/chemistry , Vehicle Emissions
4.
Toxicol Appl Pharmacol ; 229(2): 146-60, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18325559

ABSTRACT

We investigated the inflammatory and cytotoxic activities of the water-soluble and -insoluble as well as organic-solvent-soluble and -insoluble fractions of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples. The samples were collected with a high volume cascade impactor (HVCI) in 7-week sampling campaigns of selected seasons in six European cities. Mouse macrophage cells (RAW 264.7) were exposed to the samples for 24 h. The production of nitric oxide (NO) and proinflammatory cytokines (TNFalpha, IL-6), and cytotoxicity (MTT-test, apoptosis, cell cycle) were measured. The inflammatory and cytotoxic responses in both size ranges were mostly associated with the insoluble particulate fractions. However, both the water- and organic-solvent-soluble particulate fractions induced TNFalpha production and apoptosis and had some other cytotoxic effects. Soil-derived water-soluble and -insoluble components of the chemical PM(2.5-0.2) mass closure had consistent positive correlations with the responses, while the correlations were negative with the secondary inorganic anions (NO(3)(-), NH(4)(+), non-sea-salt SO(4)(2-)) and particulate organic matter (POM). With the PM(10-2.5) samples, sea salt and soluble soil components correlated positively with the induced toxic responses. In this size range, a possible underestimation of the insoluble, soil-related compounds containing Si and Ca, and biological components of POM, increased uncertainties in the evaluation of associations of the mass closure components with the responses. It is concluded that insoluble components of the complex urban air particulate mixture exert the highest inflammatory and cytotoxic activities in the macrophage cell line but, at the same time, they may operate as carriers for active water- and lipid-soluble components.


Subject(s)
Air Pollutants/toxicity , Cell Survival/drug effects , Inflammation/chemically induced , Macrophages/drug effects , Animals , Cell Line , Cytokines/biosynthesis , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , Particle Size , Solubility
5.
Environ Int ; 34(1): 51-7, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17716732

ABSTRACT

Poor indoor air quality and epidemic carbon monoxide (CO) and nitrogen dioxide (NO(2)) poisonings due to exhaust emissions from ice resurfacers have been continuously reported from enclosed ice arenas for over 30 years. The health risks in users of Finnish ice arenas were analysed in three ways: (1) evaluation of four cases of epidemic CO poisonings, (2) modelling the association between NO(2) exposure and respiratory symptoms among junior ice hockey players, and (3) estimation of the number of arena users at risk of breathing poor quality air due to non-compliance of ice arenas with recommended abatement measures. The common causes for the CO poisonings involving over 300 subjects were large emissions from propane-fuelled ice resurfacer, small arena volume, negligible ventilation, and very recent opening of the arena. Rhinitis (prevalence 18.3%) and cough (13.7%) during or after training or game were significantly associated with the estimated personal NO(2) exposure of young hockey players (n=793) to average concentrations ranging from 21 to 1176 microg/m(3) in their home arena. During a 6-year follow-up of an intensive information campaign the portion of electric resurfacers increased from 9% to 27%, and that of emission control technology on propane-fuelled resurfacers increased from 13% to 84%. The portion of inadequately ventilated arenas decreased from 34% to 25%. However, 48% of the investigated Finnish ice arenas (n=125) did not fully comply with the non-regulatory recommendations. Consequently, 20000 daily users of ice arenas were estimated to remain in 2001 at risk of breathing poor quality air. Modern small and inadequately ventilated ice arenas pose their users (mostly children and young adults) at risk of breathing poor quality air and suffering from acute adverse health effects. Governmental regulations are needed worldwide to ensure safe sports in enclosed ice arenas.


Subject(s)
Air Pollution, Indoor/analysis , Carbon Monoxide Poisoning/epidemiology , Nitrogen Dioxide/toxicity , Respiration Disorders/epidemiology , Risk Assessment , Adolescent , Adult , Air Pollutants/analysis , Carbon Monoxide Poisoning/physiopathology , Child , Female , Finland/epidemiology , Humans , Male , Prevalence , Public Facilities , Respiration Disorders/physiopathology
6.
Inhal Toxicol ; 19(3): 213-25, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17365026

ABSTRACT

We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 6 [IL-6], macrophage inflammatory protein-2 [MIP-2]), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.


Subject(s)
Air Pollutants/toxicity , Inflammation/chemically induced , Macrophages/drug effects , Particulate Matter/toxicity , Animals , Cell Line , Cell Survival/drug effects , Cytokines/biosynthesis , Mice , Nitric Oxide/biosynthesis , Particle Size
7.
Toxicol Appl Pharmacol ; 215(3): 341-53, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16678872

ABSTRACT

The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM(1-0.2)) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM(10-2.5)), intermodal size range (PM(2.5-1)), PM(1-0.2) and ultrafine (PM(0.2)) particles to cause cytokine production (TNFalpha, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.


Subject(s)
Air Pollutants/toxicity , Fires , Macrophages/drug effects , Smoke/adverse effects , Air Movements , Air Pollutants/analysis , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Chemokine CXCL2 , Chemokines/metabolism , Finland , Interleukin-6/metabolism , Macrophages/metabolism , Metals/analysis , Mice , Nitrates/analysis , Nitric Oxide/biosynthesis , Particle Size , Polycyclic Aromatic Hydrocarbons/analysis , Quaternary Ammonium Compounds/analysis , Smoke/analysis , Sulfates/analysis , Tumor Necrosis Factor-alpha/metabolism
8.
Scand J Work Environ Health ; 30 Suppl 2: 80-90, 2004.
Article in English | MEDLINE | ID: mdl-15487689

ABSTRACT

OBJECTIVES: The chemical composition and toxicity of wintertime urban-air particulate matter with an aerodynamic diameter of <10 microm (PM10), derived mostly from long-range transport and local combustion sources, were compared with those of springtime PM10 derived mostly from the resuspension of road dust. METHODS: Water-soluble ions and elements and polycyclic aromatic hydrocarbons (PAH) were analyzed from seasonally pooled PM10 samples collected at a busy traffic site in Helsinki in 1999. These PM10 samples were also tested for cytotoxicity [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide test] and the production of proinflammatory cytokines [tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6)] and nitric oxide (NO) in the mouse macrophage cell line RAW 264.7. Their oxidative capacity and the associated DNA (deoxyribonucleic acid) damage were investigated by electron paramagnetic resonance and the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-DG) in isolated calf thymus DNA, respectively. RESULTS: The late wintertime and springtime PM10 had similar compositions of water-soluble ions and elements, but the winter PM10 had a higher content of PAH. The spring PM10 was a much more potent inducer of TNF-alpha and IL-6 production than the winter PM10 was, but there were no consistent differences in cytotoxic potency. In contrast, the winter PM10 was a significantly more potent inducer of NO production and 8-OH-DG formation. The large cytokine responses to the spring PM10 were caused by its insoluble fraction and largely inhibited by the endotoxin antagonist polymyxin B. The transition metal chelator deferoxamine did not modify the proinflammatory or cytotoxic responses to the PM10 samples. CONCLUSIONS: The toxicity profile of urban-air PM10 changed with season in a subarctic climate. Particulate-bound endotoxin from soil gram-negative bacteria is suggested as a highly proinflammatory constituent of springtime resuspended road dust.


Subject(s)
Air Pollution/analysis , Deoxyguanosine/analogs & derivatives , Seasons , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cell Line , Cell Survival/drug effects , DNA Damage , Deoxyguanosine/biosynthesis , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy , Finland , Humans , Inorganic Chemicals/analysis , Inorganic Chemicals/toxicity , Interleukin-6/biosynthesis , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/biosynthesis , Particle Size , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Time Factors , Tumor Necrosis Factor-alpha/biosynthesis , Urban Health
9.
J Air Waste Manag Assoc ; 47(10): 1087-1094, 1997 Oct.
Article in English | MEDLINE | ID: mdl-28445114

ABSTRACT

The effectiveness of a new emission control system in the ice resurfacer was tested in an exhaust gas emission laboratory, and the improvement of the air quality in a small, enclosed ice arena was demonstrated in a 4.5-month follow-up study. The emission control system consisted of a lambda sensor-controlled fuel supply and a three-way metallic catalyst that were applied to a propane-fueled resurfacer. In the laboratory tests, the engine emissions of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NO ) reduced simultaneously by 91, 90, and 96%, respectively. During the air quality follow-up the median 1-hour average nitrogen dioxide (N02) concentration inside the ice arena decreased from 430 ug/m3 (230ppb) to 58 ug/m3 (31 ppb), and that of CO decreased from 4.4 mg/m3 (3.8 ppm) to 1.5 mg/m3 (1.3 ppm). The new emission control system proved to be a feasible, reliable, and effective means to improve the indoor air quality in the ice arena. However, continuous mechanical ventilation was necessary during all business hours in order to achieve and maintain a fully acceptable air quality with this technology.

10.
J Air Waste Manag Assoc ; 47(10): 1079-1086, 1997 Oct.
Article in English | MEDLINE | ID: mdl-28445121

ABSTRACT

The air quality in five Finnish ice arenas with different volumes, ventilation systems, and resurfacer power sources (propane, gasoline, electric) was monitored during a usual training evening and a standardized, simulated ice hockey game. The measurements included continuous recording of carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2) concentrations, and sampling and analysis of volatile organic compounds (VOCs). Emissions from the ice resurfacers with combustion engines caused indoor air quality problems in all ice arenas. The highest 1-hour average CO and NO2 concentrations ranged from 20 to 33 mg/m3 (17 to 29 ppm) and 270 to 7440 µg/m3 (0.14 to 3.96 ppm), respectively. The 3-hour total VOC concentrations ranged from 150 to 1200 µg/m3. The highest CO and VOC levels were measured in the arena in which a gasoline-fueled resurfacer was used. The highest NO2 levels were measured in small ice arenas with propane-fueled ice resurfacers and insufficient ventilation. In these arenas, the indoor NO2 levels were about 100 times the levels measured in ambient outdoor air, and the highest 1-hour concentrations were about 20 times the national and World Health Organization (WHO) health-based air quality guidelines. The air quality was fully acceptable only in the arena with an electric resurfacer. The present study showed that the air quality problems of indoor ice arenas may vary with the fuel type of resurfacer and the volume and ventilation of arena building. It also confirmed that there are severe air quality problems in Finnish ice arenas similar to those previously described in North America.

SELECTION OF CITATIONS
SEARCH DETAIL
...