Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Hum Brain Mapp ; 45(1): e26554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38224543

ABSTRACT

Every brain is unique, having its structural and functional organization shaped by both genetic and environmental factors over the course of its development. Brain image studies tend to produce results by averaging across a group of subjects, under the common assumption that it is possible to subdivide the cortex into homogeneous areas while maintaining a correspondence across subjects. We investigate this assumption: can the structural properties of a specific region of an atlas be assumed to be the same across subjects? This question is addressed by looking at the network representation of the brain, with nodes corresponding to brain regions and edges to their structural relationships. Using an unsupervised graph matching strategy, we align the structural connectomes of a set of healthy subjects, considering parcellations of different granularity, to understand the connectivity misalignment between regions. First, we compare the obtained permutations with four different algorithm initializations: Spatial Adjacency, Identity, Barycenter, and Random. Our results suggest that applying an alignment strategy improves the similarity across subjects when the number of parcels is above 100 and when using Spatial Adjacency and Identity initialization (the most plausible priors). Second, we characterize the obtained permutations, revealing that the majority of permutations happens between neighbors parcels. Lastly, we study the spatial distribution of the permutations. By visualizing the results on the cortex, we observe no clear spatial patterns on the permutations and all the regions across the context are mostly permuted with first and second order neighbors.


Subject(s)
Brain , Connectome , Humans , Brain/diagnostic imaging , Algorithms , Connectome/methods , Cerebral Cortex , Magnetic Resonance Imaging/methods
2.
JAMA Netw Open ; 4(1): e2031190, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33449093

ABSTRACT

Importance: Despite more widely accessible combination antiretroviral therapy (cART), HIV-1 infection remains a global public health challenge. Even in treated patients with chronic HIV infection, neurocognitive impairment often persists, affecting quality of life. Identifying the neuroanatomical pathways associated with infection in vivo may delineate the neuropathologic processes underlying these deficits. However, published neuroimaging findings from relatively small, heterogeneous cohorts are inconsistent, limiting the generalizability of the conclusions drawn to date. Objective: To examine structural brain associations with the most commonly collected clinical assessments of HIV burden (CD4+ T-cell count and viral load), which are generalizable across demographically and clinically diverse HIV-infected individuals worldwide. Design, Setting, and Participants: This cross-sectional study established the HIV Working Group within the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) consortium to pool and harmonize data from existing HIV neuroimaging studies. In total, data from 1295 HIV-positive adults were contributed from 13 studies across Africa, Asia, Australia, Europe, and North America. Regional and whole brain segmentations were extracted from data sets as contributing studies joined the consortium on a rolling basis from November 1, 2014, to December 31, 2019. Main Outcomes and Measures: Volume estimates for 8 subcortical brain regions were extracted from T1-weighted magnetic resonance images to identify associations with blood plasma markers of current immunosuppression (CD4+ T-cell counts) or detectable plasma viral load (dVL) in HIV-positive participants. Post hoc sensitivity analyses stratified data by cART status. Results: After quality assurance, data from 1203 HIV-positive individuals (mean [SD] age, 45.7 [11.5] years; 880 [73.2%] male; 897 [74.6%] taking cART) remained. Lower current CD4+ cell counts were associated with smaller hippocampal (mean [SE] ß = 16.66 [4.72] mm3 per 100 cells/mm3; P < .001) and thalamic (mean [SE] ß = 32.24 [8.96] mm3 per 100 cells/mm3; P < .001) volumes and larger ventricles (mean [SE] ß = -391.50 [122.58] mm3 per 100 cells/mm3; P = .001); in participants not taking cART, however, lower current CD4+ cell counts were associated with smaller putamen volumes (mean [SE] ß = 57.34 [18.78] mm3 per 100 cells/mm3; P = .003). A dVL was associated with smaller hippocampal volumes (d = -0.17; P = .005); in participants taking cART, dVL was also associated with smaller amygdala volumes (d = -0.23; P = .004). Conclusions and Relevance: In a large-scale international population of HIV-positive individuals, volumes of structures in the limbic system were consistently associated with current plasma markers. Our findings extend beyond the classically implicated regions of the basal ganglia and may represent a generalizable brain signature of HIV infection in the cART era.


Subject(s)
Brain/pathology , CD4 Lymphocyte Count , HIV Infections , Viral Load , Adult , Aged , Aged, 80 and over , Brain/diagnostic imaging , Cross-Sectional Studies , Female , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
3.
Heart Rhythm O2 ; 2(6Part A): 622-632, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988507

ABSTRACT

BACKGROUND: Markers of left atrial (LA) shape may improve the prediction of postablation outcomes in atrial fibrillation (AF). Correlations to LA volume and AF persistence limit their incremental value over current clinical predictors. OBJECTIVE: To develop a shape score independent from AF persistence and LA volume using shape-based statistics, and to test its ability to predict postablation outcome. METHODS: Preablation computed tomography (CT) images from 141 patients with paroxysmal (57%) or persistent (43%) AF were segmented. Deformation of an average LA shape into each patient encoded patient-specific shape. Local analysis investigates regional differences between patient groups. Linear regression was used to remove shape variations related to LA volume and AF persistence, and to build a shape score to predict postablation outcome. Cross-validation was performed to evaluate its accuracy. RESULTS: Ablation failure rate was 23% over a median 12-month follow-up. Regions associated with ablation failure mostly consisted of a large area on posteroinferior LA, mitral isthmus, and left inferior vein. On univariate analysis, strongest predictors were AF persistence (P = .005), LA indexed volume (P = .02), and the proposed shape score (P = .001). On multivariate analysis, all 3 were independent predictors of ablation failure, with the LA shape score showing the highest predictive value (odds ratio [OR] = 6.2 [2.5-15.8], P < .001), followed by LA indexed volume (OR = 3.1 [1.2-7.9], P = .019) and AF persistence (OR = 2.9 [1.2-7.6], P = .022). CONCLUSION: Posteroinferior LA, mitral isthmus, and left inferior vein are the regions whose shape have the highest impact on outcome. LA shape predicts AF ablation failure independently from, and more accurately than, atrial volume and AF persistence.

4.
Neurobiol Aging ; 94: 50-59, 2020 10.
Article in English | MEDLINE | ID: mdl-32574818

ABSTRACT

The Multidomain Alzheimer Preventive Trial was designed to assess the effect of omega-3 supplementation and multidomain intervention on cognitive decline of subjects with subjective memory complaint. In terms of cognitive testing, no significant effect was found. In this paper, we evaluate the effect of the interventions on the brain morphological changes. Subjects with magnetic resonance imaging acquisitions at baseline and at 36 months were included (N = 376). Morphological changes were characterized by volume measurements and nonlinear deformation. The multidomain intervention was associated with a significant effect on the 3-year brain morphological changes in the deformation-based approach. Differences were mainly located in the left periventricular area next to the temporoparietal junction. These changes were associated with better cognitive performance and mood/behavior stabilization. No effect of the omega-3 supplementation was observed. This result suggests a possible effect on cognition, not yet observable after 3 years. We argue that neuroimaging could help define whether early intervention strategies are effective to delay cognitive decline and dementia.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/prevention & control , Brain/pathology , Dietary Supplements , Fatty Acids, Omega-3/administration & dosage , Psychosocial Intervention/methods , Affect , Aged , Alzheimer Disease/psychology , Behavior , Cognition , Cognitive Dysfunction/prevention & control , Cohort Studies , Female , Humans , Male , Memory , Organ Size , Treatment Outcome
5.
Neuroimage ; 198: 255-270, 2019 09.
Article in English | MEDLINE | ID: mdl-31121298

ABSTRACT

In this study we propose a deformation-based framework to jointly model the influence of aging and Alzheimer's disease (AD) on the brain morphological evolution. Our approach combines a spatio-temporal description of both processes into a generative model. A reference morphology is deformed along specific trajectories to match subject specific morphologies. It is used to define two imaging progression markers: 1) a morphological age and 2) a disease score. These markers can be computed regionally in any brain region. The approach is evaluated on brain structural magnetic resonance images (MRI) from the ADNI database. The model is first estimated on a control population using longitudinal data, then, for each testing subject, the markers are computed cross-sectionally for each acquisition. The longitudinal evolution of these markers is then studied in relation with the clinical diagnosis of the subjects and used to generate possible morphological evolutions. In the model, the morphological changes associated with normal aging are mainly found around the ventricles, while the Alzheimer's disease specific changes are located in the temporal lobe and the hippocampal area. The statistical analysis of these markers highlights differences between clinical conditions even though the inter-subject variability is quite high. The model is also generative since it can be used to simulate plausible morphological trajectories associated with the disease. Our method quantifies two interpretable scalar imaging biomarkers assessing respectively the effects of aging and disease on brain morphology, at the individual and population level. These markers confirm the presence of an accelerated apparent aging component in Alzheimer's patients but they also highlight specific morphological changes that can help discriminate clinical conditions even in prodromal stages. More generally, the joint modeling of normal and pathological evolutions shows promising results to describe age-related brain diseases over long time scales.


Subject(s)
Aging/physiology , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Brain/pathology , Brain/physiopathology , Models, Neurological , Aged , Alzheimer Disease/diagnostic imaging , Biomarkers , Brain/diagnostic imaging , Cross-Sectional Studies , Disease Progression , Female , Humans , Magnetic Resonance Imaging , Male
6.
Int J Numer Method Biomed Eng ; 35(2): e3158, 2019 02.
Article in English | MEDLINE | ID: mdl-30239175

ABSTRACT

Personalised cardiac models are a virtual representation of the patient heart, with parameter values for which the simulation fits the available clinical measurements. Models usually have a large number of parameters while the available data for a given patient are typically limited to a small set of measurements; thus, the parameters cannot be estimated uniquely. This is a practical obstacle for clinical applications, where accurate parameter values can be important. Here, we explore an original approach based on an algorithm called Iteratively Updated Priors (IUP), in which we perform successive personalisations of a full database through maximum a posteriori (MAP) estimation, where the prior probability at an iteration is set from the distribution of personalised parameters in the database at the previous iteration. At the convergence of the algorithm, estimated parameters of the population lie on a linear subspace of reduced (and possibly sufficient) dimension in which for each case of the database, there is a (possibly unique) parameter value for which the simulation fits the measurements. We first show how this property can help the modeller select a relevant parameter subspace for personalisation. In addition, since the resulting priors in this subspace represent the population statistics in this subspace, they can be used to perform consistent parameter estimation for cases where measurements are possibly different or missing in the database, which we illustrate with the personalisation of a heterogeneous database of 811 cases.


Subject(s)
Heart/physiology , Models, Cardiovascular , Algorithms , Databases, Factual , Humans , Stroke Volume
7.
IEEE Trans Biomed Eng ; 65(12): 2769-2780, 2018 12.
Article in English | MEDLINE | ID: mdl-29993424

ABSTRACT

Cardiac disease can reduce the ability of the ventricles to function well enough to sustain long-term pumping efficiency. Recent advances in cardiac motion tracking have led to improvements in the analysis of cardiac function. We propose a method to study cohort effects related to age with respect to cardiac function. The proposed approach makes use of a recent method for describing cardiac motion of a given subject using a polyaffine model, which gives a compact parameterization that reliably and accurately describes the cardiac motion across populations. Using this method, a data tensor of motion parameters is extracted for a given population. The partial least squares method for higher order arrays is used to build a model to describe the motion parameters with respect to age, from which a model of motion given age is derived. Based on the cross-sectional statistical analysis with the data tensor of each subject treated as an observation along time, the left ventricular motion over time of Tetralogy of Fallot patients is analysed to understand the temporal evolution of functional abnormalities in this population compared to healthy motion dynamics.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Models, Cardiovascular , Movement/physiology , Adolescent , Adult , Algorithms , Child , Female , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine , Male , Tetralogy of Fallot/diagnostic imaging , Young Adult
8.
IEEE Trans Med Imaging ; 37(11): 2514-2525, 2018 11.
Article in English | MEDLINE | ID: mdl-29994302

ABSTRACT

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.


Subject(s)
Cardiac Imaging Techniques/methods , Deep Learning , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Databases, Factual , Female , Heart Diseases/diagnostic imaging , Humans , Male
9.
Med Image Anal ; 45: 1-12, 2018 04.
Article in English | MEDLINE | ID: mdl-29324241

ABSTRACT

One major challenge when trying to build low-dimensional representation of the cardiac motion is its natural circular pattern during a cycle, therefore making the mean image a poor descriptor of the whole sequence. Therefore, traditional approaches for the analysis of the cardiac deformation use one specific frame of the sequence - the end-diastolic (ED) frame - as a reference to study the whole motion. Consequently, this methodology is biased by this empirical choice. Moreover, the ED image might be a poor reference when looking at large deformation for example at the end-systolic (ES) frame. In this paper, we propose a novel approach to study cardiac motion in 4D image sequences using low-dimensional subspace analysis. Instead of building subspaces relying on a mean value we use a novel type of subspaces called Barycentric Subspaces which are implicitly defined as the weighted Karcher means of k+1 reference images instead of being defined with respect to one reference image. In the first part of this article, we introduce the methodological framework and the algorithms used to manipulate images within these new subspaces: how to compute the projection of a given image on the Barycentric Subspace with its coordinates, and the opposite operation of computing an image from a set of references and coordinates. Then we show how this framework can be applied to cardiac motion problems and lead to significant improvements over the single reference method. Firstly, by computing the low-dimensional representation of two populations we show that the parameters extracted correspond to relevant cardiac motion features leading to an efficient representation and discrimination of both groups. Secondly, in motion estimation, we use the projection on this low-dimensional subspace as an additional prior on the regularization in cardiac motion tracking, efficiently reducing the error of the registration between the ED and ES by almost 30%. We also derive a symmetric and transitive formulation of the registration that can be used both for frame-to-frame and frame-to-reference registration. Finally, we look at the reconstruction of the images using our proposed low-dimensional representation and show that this multi-references method using Barycentric Subspaces performs better than traditional approaches based on a single reference.


Subject(s)
Heart Diseases/diagnostic imaging , Heart Diseases/physiopathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine , Algorithms , Humans , Models, Statistical , Motion
10.
IEEE J Biomed Health Inform ; 22(2): 503-515, 2018 03.
Article in English | MEDLINE | ID: mdl-28103561

ABSTRACT

Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes. Which method best characterizes left ventricular remodeling after MI is an open research question. A better descriptor of remodeling is expected to provide a more accurate evaluation of disease status in MI patients. We therefore designed a challenge to test shape characterization in MI given a set of three-dimensional left ventricular surface points. The training set comprised 100 MI patients, and 100 asymptomatic volunteers (AV). The challenge was initiated in 2015 at the Statistical Atlases and Computational Models of the Heart workshop, in conjunction with the MICCAI conference. The training set with labels was provided to participants, who were asked to submit the likelihood of MI from a different (validation) set of 200 cases (100 AV and 100 MI). Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were used as the outcome measures. The goals of this challenge were to (1) establish a common dataset for evaluating statistical shape modeling algorithms in MI, and (2) test whether statistical shape modeling provides additional information characterizing MI patients over standard clinical measures. Eleven groups with a wide variety of classification and feature extraction approaches participated in this challenge. All methods achieved excellent classification results with accuracy ranges from 0.83 to 0.98. The areas under the receiver operating characteristic curves were all above 0.90. Four methods showed significantly higher performance than standard clinical measures. The dataset and software for evaluation are available from the Cardiac Atlas Project website1.

11.
Biomech Model Mechanobiol ; 17(1): 285-300, 2018 02.
Article in English | MEDLINE | ID: mdl-28894984

ABSTRACT

Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations. We then use this multifidelity approximation to speed-up an efficient parameter estimation algorithm, leading to a fast and computationally efficient personalisation method of the 3D model. In particular, we show results on a cohort of 121 different heart geometries and measurements. Finally, an exploitable code of the 0D model with scripts to perform parameter estimation will be released to the community.


Subject(s)
Algorithms , Models, Cardiovascular , Computer Simulation , Databases as Topic , Humans , Pressure
12.
Int J Comput Assist Radiol Surg ; 12(10): 1739-1749, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28550406

ABSTRACT

PURPOSE: Spring-assisted cranioplasty is performed to correct the long and narrow head shape of children with sagittal synostosis. Such corrective surgery involves osteotomies and the placement of spring-like distractors, which gradually expand to widen the skull until removal about 4 months later. Due to its dynamic nature, associations between surgical parameters and post-operative 3D head shape features are difficult to comprehend. The current study aimed at applying population-based statistical shape modelling to gain insight into how the choice of surgical parameters such as craniotomy size and spring positioning affects post-surgical head shape. METHODS: Twenty consecutive patients with sagittal synostosis who underwent spring-assisted cranioplasty at Great Ormond Street Hospital for Children (London, UK) were prospectively recruited. Using a nonparametric statistical modelling technique based on mathematical currents, a 3D head shape template was computed from surface head scans of sagittal patients after spring removal. Partial least squares (PLS) regression was employed to quantify and visualise trends of localised head shape changes associated with the surgical parameters recorded during spring insertion: anterior-posterior and lateral craniotomy dimensions, anterior spring position and distance between anterior and posterior springs. RESULTS: Bivariate correlations between surgical parameters and corresponding PLS shape vectors demonstrated that anterior-posterior (Pearson's [Formula: see text]) and lateral craniotomy dimensions (Spearman's [Formula: see text]), as well as the position of the anterior spring ([Formula: see text]) and the distance between both springs ([Formula: see text]) on average had significant effects on head shapes at the time of spring removal. Such effects were visualised on 3D models. CONCLUSIONS: Population-based analysis of 3D post-operative medical images via computational statistical modelling tools allowed for detection of novel associations between surgical parameters and head shape features achieved following spring-assisted cranioplasty. The techniques described here could be extended to other cranio-maxillofacial procedures in order to assess post-operative outcomes and ultimately facilitate surgical decision making.


Subject(s)
Craniosynostoses/surgery , Craniotomy/methods , Imaging, Three-Dimensional/methods , Plastic Surgery Procedures/methods , Skull/surgery , Tomography, X-Ray Computed/methods , Craniosynostoses/diagnosis , Female , Humans , Infant , Male , Skull/diagnostic imaging
13.
Front Neurosci ; 11: 132, 2017.
Article in English | MEDLINE | ID: mdl-28381986

ABSTRACT

This paper presents a simulator tool that can simulate large databases of visually realistic longitudinal MRIs with known volume changes. The simulator is based on a previously proposed biophysical model of brain deformation due to atrophy in AD. In this work, we propose a novel way of reproducing realistic intensity variation in longitudinal brain MRIs, which is inspired by an approach used for the generation of synthetic cardiac sequence images. This approach combines a deformation field obtained from the biophysical model with a deformation field obtained by a non-rigid registration of two images. The combined deformation field is then used to simulate a new image with specified atrophy from the first image, but with the intensity characteristics of the second image. This allows to generate the realistic variations present in real longitudinal time-series of images, such as the independence of noise between two acquisitions and the potential presence of variable acquisition artifacts. Various options available in the simulator software are briefly explained in this paper. In addition, the software is released as an open-source repository. The availability of the software allows researchers to produce tailored databases of images with ground truth volume changes; we believe this will help developing more robust brain morphometry tools. Additionally, we believe that the scientific community can also use the software to further experiment with the proposed model, and add more complex models of brain deformation and atrophy generation.

14.
IEEE Trans Biomed Eng ; 64(10): 2373-2383, 2017 10.
Article in English | MEDLINE | ID: mdl-28221991

ABSTRACT

OBJECTIVE: Today's growing medical image databases call for novel processing tools to structure the bulk of data and extract clinically relevant information. Unsupervised hierarchical clustering may reveal clusters within anatomical shape data of patient populations as required for modern precision medicine strategies. Few studies have applied hierarchical clustering techniques to three-dimensional patient shape data and results depend heavily on the chosen clustering distance metrics and linkage functions. In this study, we sought to assess clustering classification performance of various distance/linkage combinations and of different types of input data to obtain clinically meaningful shape clusters. METHODS: We present a processing pipeline combining automatic segmentation, statistical shape modeling, and agglomerative hierarchical clustering to automatically subdivide a set of 60 aortic arch anatomical models into healthy controls, two groups affected by congenital heart disease, and their respective subgroups as defined by clinical diagnosis. Results were compared with traditional morphometrics and principal component analysis of shape features. RESULTS: Our pipeline achieved automatic division of input shape data according to primary clinical diagnosis with high F-score (0.902 ± 0.042) and Matthews correlation coefficient (0.851 ± 0.064) using the correlation/weighted distance/linkage combination. Meaningful subgroups within the three patient groups were obtained and benchmark scores for automatic segmentation and classification performance are reported. CONCLUSION: Clustering results vary depending on the distance/linkage combination used to divide the data. Yet, clinically relevant shape clusters and subgroups could be found with high specificity and low misclassification rates. SIGNIFICANCE: Detecting disease-specific clusters within medical image data could improve image-based risk assessment, treatment planning, and medical device development in complex disease.


Subject(s)
Aorta/abnormalities , Aorta/diagnostic imaging , Heart Defects, Congenital/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Pattern Recognition, Automated/methods , Adolescent , Algorithms , Aorta/pathology , Child , Female , Heart Defects, Congenital/pathology , Humans , Machine Learning , Male , Reproducibility of Results , Sensitivity and Specificity
15.
Ann Thorac Surg ; 103(2): 645-654, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27592606

ABSTRACT

BACKGROUND: Aortic arch reconstruction after hypoplastic left heart syndrome (HLHS) palliation can vary widely in shape and dimensions between patients. Arch morphology alone may affect cardiac function and outcome. We sought to uncover the relationship of arch three-dimensional shape features with functional and short-term outcome data after total cavopulmonary connection (TCPC). METHODS: Aortic arch shape models of 37 patients with HLHS (age, 2.89 ± 0.99 years) were reconstructed from magnetic resonance data before TCPC completion. A novel, validated statistical shape analysis method was used to compute a three-dimensional anatomic mean shape from the cohort and calculate the deformation vectors of the mean shape toward each patient's specific anatomy. From these deformations, three-dimensional shape features most related to ventricular ejection fraction, indexed end-diastolic volume, and superior cavopulmonary pressure were extracted by partial least-square regression analysis. Shape patterns relating to intensive care unit and hospital lengths of stay after TCPC were assessed. RESULTS: Distinct deformation patterns, which result in an acutely mismatched aortic root and ascending aorta, and a gothic-like transverse arch, correlated with increased indexed end-diastolic volume and higher superior cavopulmonary pressure but not with ejection fraction. Specific arch morphology with pronounced transverse arch and descending aorta mismatch also correlated with longer intensive care unit and hospital lengths of stay after TCPC completion. CONCLUSIONS: Independent of hemodynamically important arch obstruction, altered aortic morphology in HLHS patients appears to have important associations with higher superior cavopulmonary pressure and with short-term outcomes after TCPC completion as highlighted by statistical shape analysis, which could act as adjunct to risk assessment in HLHS.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Fontan Procedure/methods , Hypoplastic Left Heart Syndrome/surgery , Magnetic Resonance Imaging, Cine/methods , Palliative Care/methods , Stroke Volume/physiology , Aorta, Thoracic/surgery , Child, Preschool , Female , Follow-Up Studies , Humans , Hypoplastic Left Heart Syndrome/diagnosis , Hypoplastic Left Heart Syndrome/physiopathology , Imaging, Three-Dimensional , Male , Retrospective Studies , Treatment Outcome
16.
J Thorac Cardiovasc Surg ; 153(2): 418-427, 2017 02.
Article in English | MEDLINE | ID: mdl-27776913

ABSTRACT

OBJECTIVES: Even after successful aortic coarctation repair, there remains a significant incidence of late systemic hypertension and other morbidities. Independently of residual obstruction, aortic arch morphology alone may affect cardiac function and outcome. We sought to uncover the relationship of arch 3-dimensional shape features with functional data obtained from cardiac magnetic resonance scans. METHODS: Three-dimensional aortic arch shape models of 53 patients (mean age, 22.3 ± 5.6 years) 12 to 38 years after aortic coarctation repair were reconstructed from cardiac magnetic resonance data. A novel validated statistical shape analysis method computed a 3-dimensional mean anatomic shape of all aortic arches and calculated deformation vectors of the mean shape toward each patient's arch anatomy. From these deformations, 3-dimensional shape features most related to left ventricular ejection fraction, indexed left ventricular end-diastolic volume, indexed left ventricular mass, and resting systolic blood pressure were extracted from the deformation vectors via partial least-squares regression. RESULTS: Distinct arch shape features correlated significantly with left ventricular ejection fraction (r = 0.42, P = .024), indexed left ventricular end-diastolic volume (r = 0.65, P < .001), and indexed left ventricular mass (r = 0.44, P = .014). Lower left ventricular ejection fraction, larger indexed left ventricular end-diastolic volume, and increased indexed left ventricular mass were identified with an aortic arch shape that has an elongated ascending aorta with a high arch height-to-width ratio, a relatively short proximal transverse arch, and a relatively dilated descending aorta. High blood pressure seemed to be linked to gothic arch shape features, but this did not achieve statistical significance. CONCLUSIONS: Independently of hemodynamically important arch obstruction or residual aortic coarctation, specific aortic arch shape features late after successful aortic coarctation repair seem to be associated with worse left ventricular function. Analyzing 3-dimensional shape information via statistical shape modeling can be an adjunct to long-term risk assessment in patients after aortic coarctation repair.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Aortic Coarctation/surgery , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Stroke Volume/physiology , Vascular Surgical Procedures/methods , Ventricular Function, Left/physiology , Adolescent , Adult , Aorta, Thoracic/surgery , Aortic Coarctation/diagnosis , Child , Female , Heart Ventricles/physiopathology , Humans , Imaging, Three-Dimensional , Male , Treatment Outcome , Young Adult
17.
Front Neurosci ; 10: 236, 2016.
Article in English | MEDLINE | ID: mdl-27375408

ABSTRACT

We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations.

18.
BMC Med Imaging ; 16(1): 40, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27245048

ABSTRACT

BACKGROUND: Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. METHODS: Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient's anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. RESULTS: The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. CONCLUSIONS: The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Aortic Coarctation/diagnostic imaging , Aortic Coarctation/therapy , Imaging, Three-Dimensional/methods , Aortic Coarctation/physiopathology , Computer Simulation , Humans , Magnetic Resonance Imaging/methods , Models, Anatomic , Models, Statistical , Stroke Volume , Treatment Outcome
19.
Neuroimage ; 134: 35-52, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27039699

ABSTRACT

We propose a framework for developing a comprehensive biophysical model that could predict and simulate realistic longitudinal MRIs of patients with Alzheimer's disease (AD). The framework includes three major building blocks: i) atrophy generation, ii) brain deformation, and iii) realistic MRI generation. Within this framework, this paper focuses on a detailed implementation of the brain deformation block with a carefully designed biomechanics-based tissue loss model. For a given baseline brain MRI, the model yields a deformation field imposing the desired atrophy at each voxel of the brain parenchyma while allowing the CSF to expand as required to globally compensate for the locally prescribed volume loss. Our approach is inspired by biomechanical principles and involves a system of equations similar to Stokes equations in fluid mechanics but with the presence of a non-zero mass source term. We use this model to simulate longitudinal MRIs by prescribing complex patterns of atrophy. We present experiments that provide an insight into the role of different biomechanical parameters in the model. The model allows simulating images with exactly the same tissue atrophy but with different underlying deformation fields in the image. We explore the influence of different spatial distributions of atrophy on the image appearance and on the measurements of atrophy reported by various global and local atrophy estimation algorithms. We also present a pipeline that allows evaluating atrophy estimation algorithms by simulating longitudinal MRIs from large number of real subject MRIs with complex subject-specific atrophy patterns. The proposed framework could help understand the implications of different model assumptions, regularization choices, and spatial priors for the detection and measurement of brain atrophy from longitudinal brain MRIs.


Subject(s)
Aging/pathology , Alzheimer Disease/physiopathology , Brain/pathology , Brain/physiopathology , Magnetic Resonance Imaging/methods , Models, Neurological , Alzheimer Disease/pathology , Compressive Strength , Computer Simulation , Elastic Modulus , Hardness , Humans , Image Interpretation, Computer-Assisted/methods , Longitudinal Studies , Organ Size , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical
20.
Neuroimage ; 123: 149-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26275383

ABSTRACT

Structural MRI is widely used for investigating brain atrophy in many neurodegenerative disorders, with several research groups developing and publishing techniques to provide quantitative assessments of this longitudinal change. Often techniques are compared through computation of required sample size estimates for future clinical trials. However interpretation of such comparisons is rendered complex because, despite using the same publicly available cohorts, the various techniques have been assessed with different data exclusions and different statistical analysis models. We created the MIRIAD atrophy challenge in order to test various capabilities of atrophy measurement techniques. The data consisted of 69 subjects (46 Alzheimer's disease, 23 control) who were scanned multiple (up to twelve) times at nine visits over a follow-up period of one to two years, resulting in 708 total image sets. Nine participating groups from 6 countries completed the challenge by providing volumetric measurements of key structures (whole brain, lateral ventricle, left and right hippocampi) for each dataset and atrophy measurements of these structures for each time point pair (both forward and backward) of a given subject. From these results, we formally compared techniques using exactly the same dataset. First, we assessed the repeatability of each technique using rates obtained from short intervals where no measurable atrophy is expected. For those measures that provided direct measures of atrophy between pairs of images, we also assessed symmetry and transitivity. Then, we performed a statistical analysis in a consistent manner using linear mixed effect models. The models, one for repeated measures of volume made at multiple time-points and a second for repeated "direct" measures of change in brain volume, appropriately allowed for the correlation between measures made on the same subject and were shown to fit the data well. From these models, we obtained estimates of the distribution of atrophy rates in the Alzheimer's disease (AD) and control groups and of required sample sizes to detect a 25% treatment effect, in relation to healthy ageing, with 95% significance and 80% power over follow-up periods of 6, 12, and 24months. Uncertainty in these estimates, and head-to-head comparisons between techniques, were carried out using the bootstrap. The lateral ventricles provided the most stable measurements, followed by the brain. The hippocampi had much more variability across participants, likely because of differences in segmentation protocol and less distinct boundaries. Most methods showed no indication of bias based on the short-term interval results, and direct measures provided good consistency in terms of symmetry and transitivity. The resulting annualized rates of change derived from the model ranged from, for whole brain: -1.4% to -2.2% (AD) and -0.35% to -0.67% (control), for ventricles: 4.6% to 10.2% (AD) and 1.2% to 3.4% (control), and for hippocampi: -1.5% to -7.0% (AD) and -0.4% to -1.4% (control). There were large and statistically significant differences in the sample size requirements between many of the techniques. The lowest sample sizes for each of these structures, for a trial with a 12month follow-up period, were 242 (95% CI: 154 to 422) for whole brain, 168 (95% CI: 112 to 282) for ventricles, 190 (95% CI: 146 to 268) for left hippocampi, and 158 (95% CI: 116 to 228) for right hippocampi. This analysis represents one of the most extensive statistical comparisons of a large number of different atrophy measurement techniques from around the globe. The challenge data will remain online and publicly available so that other groups can assess their methods.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Atrophy , Data Interpretation, Statistical , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...