Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(7): e6342, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19623263

ABSTRACT

The genus Orthopoxvirus contains several species of related viruses, including the causative agent of smallpox (Variola virus). In addition to smallpox, several other members of the genus are capable of causing human infection, including monkeypox, cowpox, and other zoonotic rodent-borne poxviruses. Therefore, a single assay that can accurately identify all orthopoxviruses could provide a valuable tool for rapid broad orthopovirus identification. We have developed a pan-Orthopoxvirus assay for identification of all members of the genus based on four PCR reactions targeting Orthopoxvirus DNA and RNA helicase and polymerase genes. The amplicons are detected using electrospray ionization-mass spectrometry (PCR/ESI-MS) on the Ibis T5000 system. We demonstrate that the assay can detect and identify a diverse collection of orthopoxviruses, provide sub-species information and characterize viruses from the blood of rabbitpox infected rabbits. The assay is sensitive at the stochastic limit of PCR and detected virus in blood containing approximately six plaque-forming units per milliliter from a rabbitpox virus-infected rabbit.


Subject(s)
Mass Spectrometry/methods , Orthopoxvirus/isolation & purification , Polymerase Chain Reaction/methods , Animals , Base Sequence , DNA Primers , DNA, Viral/genetics , Humans , Molecular Sequence Data , Orthopoxvirus/genetics , Rabbits , Sequence Homology, Nucleic Acid
2.
J Clin Microbiol ; 47(5): 1436-42, 2009 May.
Article in English | MEDLINE | ID: mdl-19297590

ABSTRACT

In the treatment of serious bacterial infections, the rapid institution of appropriate antimicrobial chemotherapy may be lifesaving. Choosing the correct antibiotic or combination of antibiotics is becoming very important, as multidrug resistance is found in many pathogens. Using a collection of 75 well-characterized multidrug-resistant (MDR) Acinetobacter sp. isolates, we show that PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) and base composition analysis of PCR amplification products can quickly and accurately identify quinolone resistance mediated by mutations in the quinolone resistance-determining regions of gyrA and parC, two essential housekeeping genes. Single point mutations detected by PCR/ESI-MS in parC (found in 55/75 of the isolates) and in gyrA (found in 66/75 of the isolates) correlated with susceptibility testing and sequencing. By targeting resistance determinants that are encoded by genes with highly conserved DNA sequences (e.g., gyrA and parC), we demonstrate that PCR/ESI-MS can provide critical information for resistance determinant identification and can inform therapeutic decision making in the treatment of Acinetobacter sp. infections.


Subject(s)
Acinetobacter/drug effects , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Quinolones/pharmacology , Bacterial Proteins/genetics , Base Sequence , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Humans , Microbial Sensitivity Tests/methods , Molecular Sequence Data , Mutation, Missense , Point Mutation , Polymerase Chain Reaction/methods , Spectrometry, Mass, Electrospray Ionization/methods
3.
Virology ; 368(2): 286-95, 2007 Nov 25.
Article in English | MEDLINE | ID: mdl-17655905

ABSTRACT

Members of the genus Alphavirus are a diverse group of principally mosquito-borne RNA viruses. There are at least 29 species and many more subtypes of alphaviruses and some are considered potential bioweapons. We have developed a multi-locus RT-PCR followed by electrospray ionization mass spectrometry (RT-PCR/ESI-MS) assay that uses the amplicon base compositions to detect and identify alphaviruses. A small set of primer pairs targeting conserved sites in the alphavirus RNA genome were used to amplify a panel of 36 virus isolates representing characterized Old World and New World alphaviruses. Base compositions from the resulting amplicons could be used to unambiguously determine the species or subtype of 35 of the 36 isolates. The assay detected, without culture, Venezuelan equine encephalitis virus (VEEV), Eastern equine encephalitis virus (EEEV), and mixtures of both in pools consisting of laboratory-infected and -uninfected mosquitoes. Further, the assay was used to detect alphaviruses in naturally occurring mosquito vectors collected from locations in South America and Asia. Mosquito pools collected near Iquitos, Peru, were found to contain an alphavirus with a very distinct signature. Subsequent sequence analysis confirmed that the virus was a member of the Mucambo virus species (subtype IIID in the VEEV complex). The assay we have developed provides a rapid, accurate, and high-throughput assay for surveillance of alphaviruses.


Subject(s)
Aedes/virology , Alphavirus/isolation & purification , Culex/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Alphavirus/classification , Alphavirus/genetics , Animals , Base Composition , Base Sequence , DNA Primers , Humans , Molecular Sequence Data , RNA, Viral/analysis , RNA, Viral/chemistry , RNA, Viral/isolation & purification , Sensitivity and Specificity , Time Factors
4.
PLoS One ; 2(5): e489, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17534439

ABSTRACT

BACKGROUND: Effective influenza surveillance requires new methods capable of rapid and inexpensive genomic analysis of evolving viral species for pandemic preparedness, to understand the evolution of circulating viral species, and for vaccine strain selection. We have developed one such approach based on previously described broad-range reverse transcription PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) technology. METHODS AND PRINCIPAL FINDINGS: Analysis of base compositions of RT-PCR amplicons from influenza core gene segments (PB1, PB2, PA, M, NS, NP) are used to provide sub-species identification and infer influenza virus H and N subtypes. Using this approach, we detected and correctly identified 92 mammalian and avian influenza isolates, representing 30 different H and N types, including 29 avian H5N1 isolates. Further, direct analysis of 656 human clinical respiratory specimens collected over a seven-year period (1999-2006) showed correct identification of the viral species and subtypes with >97% sensitivity and specificity. Base composition derived clusters inferred from this analysis showed 100% concordance to previously established clades. Ongoing surveillance of samples from the recent influenza virus seasons (2005-2006) showed evidence for emergence and establishment of new genotypes of circulating H3N2 strains worldwide. Mixed viral quasispecies were found in approximately 1% of these recent samples providing a view into viral evolution. CONCLUSION/SIGNIFICANCE: Thus, rapid RT-PCR/ESI-MS analysis can be used to simultaneously identify all species of influenza viruses with clade-level resolution, identify mixed viral populations and monitor global spread and emergence of novel viral genotypes. This high-throughput method promises to become an integral component of influenza surveillance.


Subject(s)
Influenza A virus/genetics , Population Surveillance , Spectrometry, Mass, Electrospray Ionization/methods , Genotype , Influenza A virus/classification , Reverse Transcriptase Polymerase Chain Reaction
5.
J Clin Microbiol ; 44(8): 2921-32, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16891513

ABSTRACT

Members of the genus Acinetobacter are ubiquitous in soil and water and are an important cause of nosocomial infections. A rapid method is needed to genotype Acinetobacter isolates to determine epidemiology and clonality during infectious outbreaks. Multilocus PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) is a method that uses the amplicon base compositions to genotype bacterial species. In order to identify regions of the Acinetobacter genome useful for this method, we sequenced regions of six housekeeping genes (trpE, adk, efp, mutY, fumC, and ppa) from 267 isolates of Acinetobacter. Isolates were collected from infected and colonized soldiers and civilians involved in an outbreak in the military health care system associated with the conflict in Iraq, from previously characterized outbreaks in European hospitals, and from culture collections. Most of the isolates from the Iraqi conflict were Acinetobacter baumannii (189 of 216 isolates). Among these, 111 isolates had genotypes identical or very similar to those associated with well-characterized A. baumannii isolates from European hospitals. Twenty-seven isolates from the conflict were found to have genotypes representing different Acinetobacter species, including 8 representatives of Acinetobacter genomospecies 13TU and 13 representatives of Acinetobacter genomospecies 3. Analysis by the PCR/ESI-MS method using nine primer pairs targeting the most information-rich regions of the trpE, adk, mutY, fumC, and ppa genes distinguished 47 of the 48 A. baumannii genotypes identified by sequencing and identified at the species level at least 18 Acinetobacter species. Results obtained with our genotyping method were essentially in agreement with those obtained by pulse-field gel electrophoresis analysis. The PCR/ESI-MS genotyping method required 4 h of analysis time to first answer with additional samples subsequently analyzed every 10 min. This rapid analysis allows tracking of transmission for the implementation of appropriate infection control measures on a time scale previously not achievable.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Acinetobacter/classification , Bacterial Typing Techniques , Acinetobacter/genetics , Acinetobacter Infections/epidemiology , Cluster Analysis , DNA Primers , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Disease Outbreaks , Genes, Bacterial , Genotype , Humans , Mass Spectrometry , Molecular Epidemiology/methods , Phylogeny , Polymerase Chain Reaction , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...