Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 20(1): 176, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27268230

ABSTRACT

BACKGROUND: Early survival following severe injury has been improved with refined resuscitation strategies. Multiple organ dysfunction syndrome (MODS) is common among this fragile group of patients leading to prolonged hospital stay and late mortality. MODS after trauma is widely attributed to dysregulated inflammation but the precise mechanics of this response and its influence on organ injury are incompletely understood. This study was conducted to investigate the relationship between early lymphocyte responses and the development of MODS during admission. METHODS: During a 24-month period, trauma patients were recruited from an urban major trauma centre to an ongoing, observational cohort study. Admission blood samples were obtained within 2 h of injury and before in-hospital intervention, including blood transfusion. The study population was predominantly male with a blunt mechanism of injury. Lymphocyte subset populations including T helper, cytotoxic T cells, NK cells and γδ T cells were identified using flow cytometry. Early cytokine release and lymphocyte count during the first 7 days of admission were also examined. RESULTS: This study demonstrated that trauma patients who developed MODS had an increased population of NK dim cells (MODS vs no MODS: 22 % vs 13 %, p < 0.01) and reduced γδ-low T cells (MODS vs no MODS: 0.02 (0.01-0.03) vs 0.09 (0.06-0.12) × 10^9/L, p < 0.01) at admission. Critically injured patients who developed MODS (n = 27) had higher interferon gamma (IFN-γ) concentrations at admission, compared with patients of matched injury severity and shock (n = 60) who did not develop MODS (MODS vs no MODS: 4.1 (1.8-9.0) vs 1.0 (0.6-1.8) pg/ml, p = 0.01). Lymphopenia was observed within 24 h of injury and was persistent in those who developed MODS. Patients with a lymphocyte count of 0.5 × 10(9)/L or less at 48 h, had a 45 % mortality rate. CONCLUSIONS: This study provides evidence of lymphocyte activation within 2 h of injury, as demonstrated by increased NK dim cells, reduced γδ-low T lymphocytes and high blood IFN-γ concentration. These changes are associated with the development of MODS and lymphopenia. The study reveals new opportunities for investigation to characterise the cellular response to trauma and examine its influence on recovery.


Subject(s)
Biomarkers/analysis , Lymphocyte Subsets/physiology , Multiple Organ Failure/diagnosis , Multiple Trauma/complications , Adult , Biomarkers/blood , Cohort Studies , Female , Humans , Interferons/analysis , Interferons/blood , Killer Cells, Natural/cytology , Logistic Models , London , Lymphocyte Subsets/metabolism , Male , Middle Aged , Multiple Organ Failure/mortality , Multiple Trauma/blood , Prospective Studies , T-Lymphocytes/cytology
2.
Eur J Immunol ; 44(2): 480-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24307058

ABSTRACT

Although mesenchymal stromal cells (MSCs) possess the capacity to modulate immune responses, little is known about the mechanisms that underpin these processes. In this study, we show that immunosupression is mediated by activation of nuclear factor kappa B (NF-κB) in human MSCs. This pathway is activated by TNF-α that is generated following TCR stimulation of T cells. Inhibition of NF-κB through silencing of IκB kinase ß or the TNF-α receptor abolishes the immunosuppressive capacity of MSCs. Our data also indicate that MSC-associated NF-κB activation primarily leads to inhibition of T-cell proliferation with little effect on expression of the activation markers CD69 and CD25. Thus, our data support the hypothesis that the TNF-α/NF-κB signalling pathway is required for the initial priming of immunosuppressive function in human MSCs. Interestingly, drugs that interfere with NF-κB activation significantly antagonise the immunoregulatory effect of MSCs, which could have important implications for immunosuppression regimens in the clinic.


Subject(s)
Lymphocyte Activation/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , NF-kappa B/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Cell Proliferation , Cells, Cultured , Humans , I-kappa B Kinase/immunology , I-kappa B Kinase/metabolism , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , NF-kappa B/immunology , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...