Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sustain Clim Chang ; 16(1): 48-63, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36910689

ABSTRACT

Evaluating sustainability stewardship at higher educational institutions is essential to working towards improving our environment. Many institutions have used environmental footprint indicators as a way to evaluate, track, and improve their impact on the environment. In this article, we present the web-based Integrated Environmental Footprint Tool (IEFT), which allows users to test how changes in certain activities impact nitrogen (N), greenhouse gases (GHG), phosphorus (P), and water (W) footprints for a university campus. This study uses the University of Virginia (UVA) as a model to show the impacts of their existing sustainability plans on multiple footprint indicators. Strategies from the University of Virginia's (UVA) two exisiting action plans, the GHG Action Plan and the N Action Plan, are evaluated to determine their impact on each of the footprints (GHG, N, P, and W). Based on the 2025 goal year, the strategies in these action plans are estimated to reduce the GHG, N, P, and W footprints by -38%, 32%, 25%, and 2.7% respectively. The damage costs associated with GHG and N footprints are assessed and reveal a 38 percent reduction in damage costs for GHG and a 42 percent reduction in costs for N. Using the IEFT to evaluate the impact of these action plan strategies, UVA optimized environmental outcomes. The model shown here can be used at other institutions to evaluate the environmental impact of planned changes to an institutions' operations.

2.
Freshw Sci ; 41(3): 420-441, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36213200

ABSTRACT

We investigate impacts of Freshwater Salinization Syndrome (FSS) on mobilization of salts, nutrients, and metals in urban streams and stormwater BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic U.S. and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show: (1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g., similar to the way concentrations increase during other soil disturbance activities); (2) sharp declines in pH (acidification) in response to road salt applications due to mobilization of H+ from soil exchange sites by Na+; (3) sharp increases in organic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications likely due to lysing cells and/or changes in solubility; (4) significant retention (~30-40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; (5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients (N, P), and trace metals (Cu, Sr) from stormwater BMPs and restored streams in response to FSS; (6) downstream increasing loads of Cl-, SO4 2-, Br-, F-, and I- along flowpaths through urban streams, and P release from urban stormwater BMPs in response to salinization, and (7) a significant annual reduction (> 50%) in Na+ concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compared our original results to published metrics of contaminant retention and release across a broad range of stormwater management BMPs from North America and Europe. Overall, urban streams and stormwater management BMPs consistently retain Na+ and Cl- but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater management BMPs. Reducing diverse 'chemical cocktails' of contaminants mobilized by freshwater salinization is now a priority for effectively and holistically restoring urban waters.

3.
Urban Ecosyst ; 25(3): 879-907, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35561157

ABSTRACT

Stream restoration is a popular approach for managing nitrogen (N) in degraded, flashy urban streams. Here, we investigated the long-term effects of stream restoration involving floodplain reconnection on riparian and in-stream N transport and transformation in an urban stream in the Chesapeake Bay watershed. We examined relationships between hydrology, chemistry, and biology using a Before/After-Control/Impact (BACI) study design to determine how hydrologic flashiness, nitrate (NO3 -) concentrations (mg/L), and N flux, both NO3 - and total N (kg/yr), changed after the restoration and floodplain hydrologic reconnection to its stream channel. We examined two independent surface water and groundwater data sets (EPA and USGS) collected from 2002-2012 at our study sites in the Minebank Run watershed. Restoration was completed during 2004 and 2005. Afterward, the monthly hydrologic flashiness index, based on mean monthly discharge, decreased over time from 2002 and 2008. However, from 2008-2012 hydrologic flashiness returned to pre-restoration levels. Based on the EPA data set, NO3 - concentration in groundwater and surface water was significantly less after restoration while the control site showed no change. DOC and NO3 - were negatively related before and after restoration suggesting C limitation of N transformations. Long-term trends in surface water NO3 - concentrations based on USGS surface water data showed downward trends after restoration at both the restored and control sites, whereas specific conductance showed no trend. Comparisons of NO3 - concentrations with Cl- concentrations and specific conductance in both ground and surface waters suggested that NO3 - reduction after restoration was not due to dilution or load reductions from the watershed. Modeled NO3 - flux decreased post restoration over time but the rate of decrease was reduced likely due to failure of restoration features that facilitated N transformations. Groundwater NO3 - concentrations varied among stream features suggesting that some engineered features may be functionally better at creating optimal conditions for N retention. However, some engineered features eroded and failed post restoration thereby reducing efficacy of the stream restoration to reduce flashiness and NO3 - flux. N management via stream restoration will be most effective where flashiness can be reduced and DOC made available for denitrifiers. Stream restoration may be an important component of holistic watershed management including stormwater management and nutrient source control if stream restoration and floodplain reconnection can be done in a manner to resist the erosive effects of large storm events that can degrade streams to pre-restoration conditions. Long-term evolution of water quality functions in response to degradation of restored stream channels and floodplains from urban stressors and storms over time warrants further study, however.

4.
Sci Total Environ ; 804: 149890, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34520927

ABSTRACT

Wildfires are a concern for water quality in the United States, particularly in the wildland-urban interface of populous areas. Wildfires combust vegetation and surface soil organic matter, reduce plant nutrient uptake, and can alter the composition of runoff and receiving waters. At the wildland-urban interface, fires can also introduce contaminants from the combustion of man-made structures. We examine post-wildfire effects on drinking water quality by evaluating concentrations and maximum contaminant level (MCL) violations of selected contaminants regulated in the U.S. at public drinking water systems (PWSs) located downstream from wildfire events. Among contaminants regulated under the U.S. Safe Drinking Water Act, nitrate, arsenic, disinfection byproducts, and volatile organic compounds (VOCs) were analyzed in watersheds that experienced major wildfires. Surface water sourced drinking water (SWDW) nitrate violations increased by an average of 0.56 violations per PWS and concentrations increased by 0.044 mg-N/L post-wildfire. Groundwater sourced drinking water (GWDW) nitrate violations increased by 0.069 violations per PWS and concentrations increased by 0.12 mg-N/L post-wildfire. SWDW total trihalomethane (TTHM) violations increased by 0.58 violations per PWS and concentrations increased by 10.4 µg/L. SWDW total haloacetic acid (HAA5) violations increased by 0.82 violations per PWS and concentrations increased by 8.5 µg/L. Arsenic violations increased by 1.08 violations per PWS and concentrations increased by 0.92 µg/L. There was no significant effect of wildfires on average VOC violations. Nitrate violations increased in 75% of SWDW sites and 34% of GWDW sites post-wildfire, while about 71% and 50% of SWDW sites showed an increase in TTHM and HAA5 violations. Violations also increased for 35% of arsenic and 44% of VOC sites post-wildfire. These findings support the need for increased awareness about the impact of wildfires on drinking water treatment to help PWS operators adapt to the consequences of wildfires on source water quality, particularly in wildfire-prone regions.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Wildfires , Disinfection , Humans , Nitrates , United States , Water Pollutants, Chemical/analysis
5.
Water Resour Res ; 57(10): 1-20, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34898727

ABSTRACT

Determining wildland fire impacts on streamflow can be problematic as the hydrology in burned watersheds is influenced by post-fire weather conditions. This study presents a quantile-based analytical framework for assessing fire impacts on low and peak daily flow magnitudes, while accounting for post-fire weather influences. This framework entails (a) the bootstrap method to compute the relative change in the post-fire annual flow and weather statistics, (b) Double Mass analysis to detect if post-fire baseflow and quick flow yield ratios are significantly altered, and (c) a quantile regression method to parse fire effects on flow at a specific quantile. We illustrate the applicability of this analytical framework using 44 western US streams with at least 5% of their watershed area burned. Results indicate that large, high-severity burns in upland watersheds can raise the streamflow magnitude at the 0.05 th and 0.95 th quantiles for at least the five post-fire years. Quantile regression results show that the median fire-related increase in flow for the five post-fire years can be up to 5000% (Standard Error; SE < 2%) at the 0.05 th quantile and 161% (SE < 10%) at the 0.95 th quantile. The fire-related increase in flow was often pronounced at the 0.05 th quantile for streams in the Pacific Northwest and California regions. The difference in fire effects on flow (at both quantiles) across streams was related to post-fire weather, pyrology, physiography, and land cover. The proposed analytical framework can be useful for detecting and quantifying fire effects on the low and peak stream flows in burned watersheds without overlapping disturbances.

6.
Sci Total Environ ; 722: 137661, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32192969

ABSTRACT

Excess nitrate in drinking water is a human health concern, especially for young children. Public drinking water systems in violation of the 10 mg nitrate-N/L maximum contaminant level (MCL) must be reported in EPA's Safe Drinking Water Information System (SDWIS). We used SDWIS data with random forest modeling to examine the drivers of nitrate violations across the conterminous U.S. and to predict where public water systems are at risk of exceeding the nitrate MCL. As explanatory variables, we used land cover, nitrogen inputs, soil/hydrogeology, and climate variables. While we looked at the role of nitrate treatment in separate analyses, we did not include treatment as a factor in the final models, due to incomplete information in SDWIS. For groundwater (GW) systems, a classification model correctly classified 79% of catchments in violation and a regression model explained 43% of the variation in nitrate concentrations above the MCL. The most important variables in the GW classification model were % cropland, agricultural drainage, irrigation-to-precipitation ratio, nitrogen surplus, and surplus precipitation. Regions predicted to have risk for nitrate violations in GW were the Central California Valley, parts of Washington, Idaho, the Great Plains, Piedmont of Pennsylvania and Coastal Plains of Delaware, and regions of Wisconsin, Iowa, and Minnesota. For surface water (SW) systems, a classification model correctly classified 90% of catchments and a regression model explained 52% of the variation in nitrate concentration. The variables most important for the SW classification model were largely hydroclimatic variables including surplus precipitation, irrigation-to-precipitation ratio, and % shrubland. Areas at greatest risk for SW nitrate violations were generally in the non-mountainous west and southwest. Identifying the areas with possible risk for future violations and potential drivers of nitrate violations across U.S. can inform decisions on how source water protection and other management options could best protect drinking water.


Subject(s)
Drinking Water/chemistry , Nitrates , United States , Water Pollutants, Chemical , Water Supply
7.
Environ Sci Technol ; 53(19): 11478-11485, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31502444

ABSTRACT

Arsenic poses a threat to public health due to widespread environmental prevalence and known carcinogenic effects. In 2001, the US EPA published the Final Arsenic Rule (FAR) for public drinking water, reducing the maximum contaminant level (MCL) from 50 to 10 µg/L. We investigated impacts of the FAR on drinking water violations temporally and geographically using the Safe Drinking Water Information System. Violations exceeding the MCL and the population served by violating systems were analyzed across the conterminous US from 2006 (onset of FAR enforcement) to 2017. The percentage of public water system violations declined from 1.3% in 2008 to 0.55% in 2017 (p < 0.001, slope = -0.070), and the population served decreased by over 1 million (p < 0.001, slope = -106 886). Geographical analysis demonstrated higher mean violations and populations served in certain counties rather than evenly distributed across states. The decline in violations is likely due to the adoption of documented and undocumented treatment methods and possibly from reduced environmental releases. Considering other studies that have shown decreased urinary arsenic levels in the population served by public water systems since the new standard, it may be inferred that the FAR is facilitating the reduction of arsenic exposure in the US.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Environmental Exposure , Public Health , Research Design , United States , United States Environmental Protection Agency , Water Supply
8.
Environ Sci Technol ; 51(22): 13450-13460, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29052975

ABSTRACT

Drinking water maximum contaminant levels (MCL) are established by the U.S. EPA to protect human health. Since 1975, U.S. public water suppliers have reported MCL violations to the national Safe Drinking Water Information System (SDWIS). This study assessed temporal and geographic trends for violations of the 10 mg nitrate-N L-1 MCL in the conterminous U.S. We found that the proportion of systems in violation for nitrate significantly increased from 0.28% to 0.42% of all systems between 1994 and 2009 and then decreased to 0.32% by 2016. The number of people served by systems in violation decreased from 1.5 million in 1997 to 200 000 in 2014. Periodic spikes in people served were often driven by just one large system in violation. On average, Nebraska and Delaware had the greatest proportion of systems in violation (2.7% and 2.4%, respectively), while Ohio and California had the greatest average annual number of people served by systems in violation (278 374 and 139 149 people, respectively). Even though surface water systems that serve more people have been improving over time, groundwater systems in violation and average duration of violations are increasing, indicating persistent nitrate problems in drinking water.


Subject(s)
Drinking Water , Nitrates , California , Delaware , Humans , Nebraska , Ohio , United States , Water Pollutants, Chemical , Water Supply
9.
Biogeosciences ; 14(11)2017 Jun 13.
Article in English | MEDLINE | ID: mdl-32665782

ABSTRACT

Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3 - ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3 - and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78) and methane (CH4, r 2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.

10.
Freshw Biol ; 62(11): 1917-1928, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-35340891

ABSTRACT

1. Urban streams are degraded by a suite of factors, including burial beneath urban infrastructure, such as roads or parking lots, which eliminates light and reduces direct organic matter inputs to streams from riparian zones. These changes to stream metabolism and terrestrial carbon contribution will likely have consequences for organic matter metabolism by microbes and dissolved organic matter (DOM) use patterns in streams. Respiration by heterotrophic biofilms drives the nitrogen and phosphorus cycles, but we lack a clear understanding of how stream burial and seasonality affect microbial carbon use. 2. We studied seasonal changes (autumn, spring, and summer) in organic matter metabolism by microbial communities in open and buried reaches of three urban streams in Cincinnati, OH. We characterised DOM quality using fluorescence spectroscopy and extracellular enzyme profiles, and we measured the respiration response to carbon supplements in nutrient diffusing substrata (NDS). We hypothesised: (1) that algal production would lead to higher quality DOM in spring compared to other seasons and in open compared to buried reaches, (2) lower reliance of microbial respiration on recalcitrant carbon sources in spring and in open reaches, and (3) that microbial respiration would increase in response to added carbon in autumn and in buried reaches. 3. Several fluorescence metrics showed higher quality DOM in spring than autumn, but only the metric of recalcitrant humic compounds varied by reach, with more humic DOM in open compared to buried reaches. This likely reflected open reaches as an avenue for direct terrestrial inputs from the riparian zone. 4. Extracellular enzyme assays showed that microbes in buried reaches allocated more effort to degrade recalcitrant carbon sources, consistent with a lack of labile carbon compounds due to limited photosynthesis. Nitrogen acquisition enzymes were highest in autumn coincident with riparian leaf inputs to the streams. Buried and open reaches both responded more strongly to added carbon in autumn when terrestrial leaf inputs dominated compared to the spring when vernal algal blooms were pronounced. 5. Our data show that stream burial affects the quality of the DOM pool with consequences for how microbes use those carbon sources, and that heterotrophic respiration increased on carbon-supplemented NDS in buried and open stream reaches in both seasons. Different carbon quality and use patterns suggest that urban stream infrastructure affects spatiotemporal patterns of bacterial respiration, with likely consequences for nitrogen and/or phosphorus cycling given that carbon use drives other biogeochemical cycles. Management actions that increase light to buried streams could shift the balance between allochthonous and autochthonous DOM in urban streams with consequences for spatiotemporal patterns in bacterial metabolism.

11.
Sci Total Environ ; 565: 1044-1053, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27261425

ABSTRACT

Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to reduce flooding, combined sewer overflows, and pollutant transport to streams and rivers. Despite the increasing use of urban SGI, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Washington, DC, Montgomery County, MD, and Baltimore County, MD, were selected based on the availability of data on SGI, water quality, and stream flow. The cumulative impact of SGI was evaluated over space and time by comparing watersheds with and without SGI, and by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most Mid-Atlantic municipalities have a goal of achieving 10-20% of the landscape drain runoff through SGI by 2030. Of these areas, Washington, DC currently has the greatest amount of SGI (12.7% of the landscape drained through SGI), while Baltimore County has the lowest (7.9%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI have less flashy hydrology, with 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff. Watersheds with more SGI also show 44% less NO3(-) and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in phosphorus exports or combined sewer overflows in watersheds with greater SGI. When comparing individual watersheds over time, increases in SGI corresponded to non-significant reductions in hydrologic flashiness compared to watersheds with no change in SGI. While the implementation of SGI is somewhat in its infancy in some regions, cities are beginning to have a scale of SGI where there are statistically significant differences in hydrologic patterns and water quality.

12.
PLoS One ; 10(7): e0132256, 2015.
Article in English | MEDLINE | ID: mdl-26186731

ABSTRACT

Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention.


Subject(s)
Environmental Monitoring , Groundwater/analysis , Nitrogen/analysis , Cities , Ecosystem , Humans , United States , Water Supply
13.
Talanta ; 70(2): 315-22, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-18970769

ABSTRACT

Individual compounds were isolated from a laboratory mixture of capsaicinoids by a multi-stage approach. First, the capsaicinoids were fractionated into capsaicins and non-capsaicins by argentation solid phase extraction (SPE) on a silver-charged propyl sulfonate resin. Second, compounds in each fraction were isolated by semi-preparative liquid chromatography on a C(30) phase in aqueous methanol. Third, the individual components of the original mixture were concentrated by reversed phased (C(18)) SPE. The structure of each purified compound was confirmed by (13)C NMR spectrometry and spectral comparison to known standards, purchased or synthesized locally. The chemical shifts of 15 capsaicinoid standards were measured on a 600MHz instrument, and their assignments to particular carbons were made by reference to Distortionless Enhancement by Polarization Transfer (DEPT) NMR experiments and NMR spectral prediction software.

14.
J Phys Chem A ; 109(9): 1879-89, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-16833520

ABSTRACT

Kinetics studies of the OH-initiated oxidation of 2-butyne, propyne, and acetylene were conducted at 100 Torr and 298 K using turbulent flow chemical ionization mass spectrometry. The major oxidation products were identified, and with the aid of supporting electronic structure thermodynamics calculations, a general OH-initiated oxidation mechanism for the alkynes is proposed. The major product branching ratio and the product-forming rate constants for the 2-butyne-OH adduct + O(2) reaction were experimentally determined as well. The atmospheric implications of the chemical oxidation mechanism and kinetics results are discussed.

15.
J Phys Chem A ; 109(26): 5865-71, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16833921

ABSTRACT

The overall rate constants of the NO reaction with chloroalkylperoxy radicals derived from the Cl-initiated oxidation of several atmospherically abundant alkenes-ethene, propene, 1-butene, 2-butene, 2-methylpropene, 1,3-butadiene, and isoprene (2-methyl-1,3-butadiene)-were determined for the first time via the turbulent flow technique and pseudo-first-order kinetics conditions with high-pressure chemical ionization mass spectrometry for the direct detection of chloroalkylperoxy radical reactants. The individual 100 Torr, 298 K rate constants for each monoalkene system were found to be identical within the 95% confidence interval associated with each separate measurement, whereas the corresponding rate constants for 1,3-butadiene and isoprene were both approximately 20% higher than the monoalkene mean value. Our previous study of the reaction of hydroxylalkylperoxy radicals (derived from the OH-initiated oxidation of alkenes) with NO yielded identical rate constants for all of the alkenes under study, with a rate constant value within the statistical uncertainty of the value determined here for the NO reaction of chloroalkylperoxy radicals derived from monoalkenes. Thus, the reaction of NO with chloroalkylperoxy radicals derived from dialkenes is found to be significantly faster than the NO reaction with either chloroalkylperoxy radicals derived from monoalkenes or hydroxyalkylperoxy radicals derived from either mono- or dialkenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...