Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
PLoS One ; 19(5): e0302829, 2024.
Article in English | MEDLINE | ID: mdl-38728342

ABSTRACT

Restless Legs Syndrome (RLS) is a common sleep disorder characterized by an urge to move the legs that is responsive to movement (particularly during rest), periodic leg movements during sleep, and hyperarousal. Recent evidence suggests that the involvement of the adenosine system may establish a connection between dopamine and glutamate dysfunction in RLS. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological technique widely applied to explore brain electrophysiology and neurochemistry under different experimental conditions. In this pilot study protocol, we aim to investigate the effects of dipyridamole (a well-known enhancer of adenosinergic transmission) and caffeine (an adenosine receptor antagonist) on measures of cortical excitation and inhibition in response to TMS in patients with primary RLS. Initially, we will assess cortical excitability using both single- and paired-pulse TMS in patients with RLS. Then, based on the measures obtained, we will explore the effects of dipyridamole and caffeine, in comparison to placebo, on various TMS parameters related to cortical excitation and inhibition. Finally, we will evaluate the psycho-cognitive performance of RLS patients to screen them for cognitive impairment and/or mood-behavioral dysfunction, thus aiming to correlate psycho-cognitive findings with TMS data. Overall, this study protocol will be the first to shed lights on the neurophysiological mechanisms of RLS involving the modulation of the adenosine system, thus potentially providing a foundation for innovative "pharmaco-TMS"-based treatments. The distinctive TMS profile observed in RLS holds indeed the potential utility for both diagnosis and treatment, as well as for patient monitoring. As such, it can be considered a target for both novel pharmacological (i.e., drug) and non-pharmacological (e.g., neuromodulatory), "TMS-guided", interventions.


Subject(s)
Caffeine , Dipyridamole , Restless Legs Syndrome , Transcranial Magnetic Stimulation , Humans , Restless Legs Syndrome/drug therapy , Restless Legs Syndrome/physiopathology , Transcranial Magnetic Stimulation/methods , Caffeine/pharmacology , Caffeine/therapeutic use , Pilot Projects , Dipyridamole/pharmacology , Dipyridamole/therapeutic use , Male , Adenosine/metabolism , Adult , Female , Purinergic P1 Receptor Antagonists/therapeutic use , Purinergic P1 Receptor Antagonists/pharmacology , Middle Aged , Proof of Concept Study
2.
Life (Basel) ; 13(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38137907

ABSTRACT

BACKGROUND: Clinically, there is considerable heterogeneity in the presentation of transthyretin amyloidosis (ATTR), which ranges from primarily cardiac and primarily neurologic to mixed disease, among other manifestations. Because of this complex presentation, the diagnosis and management of patients with ATTR are often challenging and should be performed in interdisciplinary centers specialized in amyloidosis. Here, we aimed to increase awareness of ATTR detection and pathophysiology through a multidimensional multiorgan approach. CASE REPORT: We reported on a 60-year-old man with wild-type ATTR who underwent a number of both basic and advanced cardiological and neurological investigations at baseline and after a treatment period with the TTR tetramer stabilizer, tafamidis. Several findings are provided here, some of which might be considered instrumental correlates of the patient's clinical improvement after therapy. CONCLUSIONS: Adequate awareness and prompt recognition of ATTR support early diagnosis and faster access to therapies, thereby slowing the progression and improving the prognosis. The need for a multidisciplinary alliance between specialists and the opportunity to perform, at least in selected cases, a set of specific examinations for a detailed assessment of ATTR patients can also provide valuable insights into the physiopathology and response to therapy of a disease as complex and intriguing as ATTR.

3.
Immunol Res ; 71(6): 950-958, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37491623

ABSTRACT

Multiple sclerosis (MS) is an autoimmune, demyelinating disorder of the central nervous system (CNS) affecting approximately 2.5 million people worldwide. The mechanisms underlying the pathogenesis of MS are still only partially elucidated. Galectins are a family of ß-galactoside-binding lectins that are involved in the regulation of immune and inflammatory responses and have been shown to exert a role in the maintenance of central nervous system (CNS) homeostasis. There has been an increasing interest in the role of galectin-3 in neuroinflammation and neurodegeneration. In the current study, we have evaluated the expression levels of galectin-3 in different cellular populations involved in the etiopathogenesis of MS. We have observed dramatically higher transcriptomic levels of galectin-3 in encephalitogenic CD4+ T cells in a preclinical model of MS, the MOG-induced experimental allergic encephalomyelitis (EAE). Also, significantly higher levels of galectin-3 were found in microglial cells, astrocytes, and oligodendrocytes isolated from the spinal cord of EAE mice, as well as in human MS-related white matter lesions. Modular co-expression analysis revealed that galectin-3 is co-expressed with genes involved in the regulation of microglia, cytokine production, and chemotaxis. This is the first comprehensive analysis of the expression of galectin-3 in MS, further strengthening its potential pathogenetic role in the etiopathogenesis of this CNS autoimmune disorder.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Humans , Mice , Galectin 3/genetics , Galectin 3/metabolism , Galectins/genetics , Galectins/metabolism , Mice, Inbred C57BL , Up-Regulation
4.
Front Hum Neurosci ; 17: 1152204, 2023.
Article in English | MEDLINE | ID: mdl-37362949

ABSTRACT

Background: Differentiating between physiologic and altered motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) is crucial in clinical practice. Some physical characteristics, such as height and age, introduce sources of variability unrelated to neural dysfunction. We provided new age- and height-adjusted normal values for cortical latency, central motor conduction time (CMCT), and peripheral motor conduction time (PMCT) from a large cohort of healthy subjects. Methods: Previously reported data from 587 participants were re-analyzed. Nervous system disorders were ruled out by clinical examination and magnetic resonance imaging. MEP latency was determined as stimulus-to-response latency through stimulation with a circular coil over the "hot spot" of the First Dorsal Interosseous and Tibialis Anterior muscles, during mild tonic contraction. CMCT was estimated as the difference between MEP cortical latency and PMCT by radicular magnetic stimulation. Additionally, right-to-left differences were calculated. For each parameter, multiple linear regression models of increasing complexity were fitted using height, age, and sex as regressors. Results: Motor evoked potential cortical latency, PMCT, and CMCT were shown to be age- and height-dependent, although age had only a small effect on CMCT. Relying on Bayesian information criterion for model selection, MEP cortical latency and PMCT were explained best by linear models indicating a positive correlation with both height and age. Also, CMCT to lower limbs positively correlated with height and age. CMCT to upper limbs positively correlated to height, but slightly inversely correlated to age, as supported by non-parametric bootstrap analysis. Males had longer cortical latencies and CMCT to lower limbs, as well as longer PMCT and cortical latencies to upper limbs, even when accounting for differences in body height. Right-to-left-differences were independent of height, age, and sex. Based on the selected regression models, sex-specific reference values were obtained for all TMS-related latencies and inter-side differences, with adjustments for height and age, where warranted. Conclusion: A significant relationship was observed between height and age and all MEP latency values, in both upper and lower limbs. These set of reference values facilitate the evaluation of MEPs in clinical studies and research settings. Unlike previous reports, we also highlighted the contribution of sex.

5.
PLoS One ; 18(3): e0282751, 2023.
Article in English | MEDLINE | ID: mdl-36867595

ABSTRACT

BACKGROUND: Sex differences in vascular cognitive impairment (VCI) at risk for future dementia are still debatable. Transcranial magnetic stimulation (TMS) is used to evaluate cortical excitability and the underlying transmission pathways, although a direct comparison between males and females with mild VCI is lacking. METHODS: Sixty patients (33 females) underwent clinical, psychopathological, functional, and TMS assessment. Measures of interest consisted of: resting motor threshold, latency of motor evoked potentials (MEPs), contralateral silent period, amplitude ratio, central motor conduction time (CMCT), including the F wave technique (CMCT-F), short-interval intracortical inhibition (SICI), intracortical facilitation, and short-latency afferent inhibition, at different interstimulus intervals (ISIs). RESULTS: Males and females were comparable for age, education, vascular burden, and neuropsychiatric symptoms. Males scored worse at global cognitive tests, executive functioning, and independence scales. MEP latency was significantly longer in males, from both sides, as well CMCT and CMCT-F from the left hemisphere; a lower SICI at ISI of 3 ms from the right hemisphere was also found. After correction for demographic and anthropometric features, the effect of sex remained statistically significant for MEP latency, bilaterally, and for CMCT-F and SICI. The presence of diabetes, MEP latency bilaterally, and both CMCT and CMCT-F from the right hemisphere inversely correlated with executive functioning, whereas TMS did not correlate with vascular burden. CONCLUSIONS: We confirm the worse cognitive profile and functional status of males with mild VCI compared to females and first highlight sex-specific changes in intracortical and cortico-spinal excitability to multimodal TMS in this population. This points to some TMS measures as potential markers of cognitive impairment, as well as targets for new drugs and neuromodulation therapies.


Subject(s)
Cognitive Dysfunction , Transcranial Magnetic Stimulation , Humans , Female , Male , Sex Characteristics , Anthropometry
6.
Biomedicines ; 11(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36979937

ABSTRACT

BACKGROUND: Although the antidepressant potential of repetitive transcranial magnetic stimulation (rTMS), the pleiotropic effects in geriatric depression (GD) are poorly investigated. We tested rTMS on depression, cognitive performance, growth/neurotrophic factors, cerebral blood flow (CBF) to transcranial Doppler sonography (TCD), and motor-evoked potentials (MEPs) to TMS in GD. METHODS: In this case series study, six drug-resistant subjects (median age 68.0 years) underwent MEPs at baseline and after 3 weeks of 10 Hz rTMS on the left dorsolateral prefrontal cortex. The percentage change of serum nerve growth factor, vascular endothelial growth factor, brain-derived growth factor, insulin-like growth factor-1, and angiogenin was obtained. Assessments were performed at baseline, and at the end of rTMS; psychocognitive tests were also repeated after 1, 3, and 6 months. RESULTS: Chronic cerebrovascular disease was evident in five patients. No adverse/undesirable effect was reported. An improvement in mood was observed after rTMS but not at follow-up. Electrophysiological data to TMS remained unchanged, except for an increase in the right median MEP amplitude. TCD and neurotrophic/growth factors did not change. CONCLUSIONS: We were unable to detect a relevant impact of high-frequency rTMS on mood, cognition, cortical microcircuits, neurotrophic/growth factors, and CBF. Cerebrovascular disease and exposure to multiple pharmacological treatments might have contributed.

8.
Curr Issues Mol Biol ; 45(2): 1762-1778, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36826058

ABSTRACT

Inositol is a natural sugar-like compound, commonly present in many plants and foods. It is involved in several biochemical pathways, most of them controlling vital cellular mechanisms, such as cell development, signaling and nuclear processes, metabolic and endocrine modulation, cell growth, signal transduction, etc. In this narrative review, we focused on the role of inositol in human brain physiology and pathology, with the aim of providing an update on both potential applications and current limits in its use in psychiatric disorders. Overall, imaging and biomolecular studies have shown the role of inositol levels in the pathogenesis of mood disorders. However, when administered as monotherapy or in addition to conventional drugs, inositol did not seem to influence clinical outcomes in both mood and psychotic disorders. Conversely, more encouraging results have emerged for the treatment of panic disorders. We concluded that, despite its multifaceted neurobiological activities and some positive findings, to date, data on the efficacy of inositol in the treatment of psychiatric disorders are still controversial, partly due to the heterogeneity of supporting studies. Therefore, systematic use of inositol in routine clinical practice cannot be recommended yet, although further basic and translational research should be encouraged.

9.
Sleep Med Rev ; 67: 101735, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563570

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is a widely used non-invasive neuromodulatory technique. When applied in sleep medicine, the main hypothesis explaining its effects concerns the modulation of synaptic plasticity and the strength of connections between the brain areas involved in sleep disorders. Recently, there has been a significant increase in the publication of rTMS studies in primary sleep disorders. A multi-database-based search converges on the evidence that rTMS is safe and feasible in chronic insomnia, obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), and sleep deprivation-related cognitive deficits, whereas limited or no data are available for narcolepsy, sleep bruxism, and REM sleep behavior disorder. Regarding efficacy, the stimulation of the dorsolateral prefrontal cortex bilaterally, right parietal cortex, and dominant primary motor cortex (M1) in insomnia, as well as the stimulation of M1 leg area bilaterally, left primary somatosensory cortex, and left M1 in RLS reduced subjective symptoms and severity scale scores, with effects lasting for up to weeks; conversely, no relevant effect was observed in OSAS and narcolepsy. Nevertheless, several limitations especially regarding the stimulation protocols need to be considered. This review should be viewed as a step towards the further contribution of individually tailored neuromodulatory techniques for sleep disorders.


Subject(s)
Narcolepsy , Restless Legs Syndrome , Sleep Apnea, Obstructive , Sleep Initiation and Maintenance Disorders , Sleep Wake Disorders , Humans , Transcranial Magnetic Stimulation/methods , Brain
10.
J Integr Neurosci ; 22(6): 164, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38176943

ABSTRACT

BACKGROUND: Gambling Disorder (GD) is a behavioral addiction listed within the diagnostic category of substance-related and addictive disorders. Recently, transcranial magnetic stimulation (TMS), which non-invasively stimulates the brain and has neuromodulatory properties, has emerged as an innovative treatment tool for GD, thus offering a new option for the management of this complex disorder. The present review explored the efficacy of TMS as a possible non-pharmacological treatment for GD. METHODS: An exhaustive search was performed across the MEDLINE, Web of Science, and EMBASE databases using a specific search string related to GD and TMS. A total of 20 papers were selected for full-text examination, out of which eight fulfilled the inclusion criteria and were therefore systematically analyzed in the present review. RESULTS: This review included eight studies: three randomized-controlled trials (RCTs), three non-controlled studies, one case series, and one case report. Two cross-over RCTs described a decrease in craving after high-frequency (excitatory), repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) and the medial prefrontal cortex (PFC), respectively; another study applying low-frequency (inhibitory) rTMS on the right DLPFC did not find any positive effect on craving. Among uncontrolled studies, one demonstrated the beneficial effect of high-frequency rTMS over the left DLPFC, while another showed the efficacy of a continuous theta burst stimulation protocol directed over the pre-supplementary motor area, bilaterally. CONCLUSION: The included studies showed the promising effect of excitatory stimulation over the left PFC. However, further investigation is needed, particularly in terms of standardizing stimulation protocols and psychometric assessments.


Subject(s)
Gambling , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Gambling/therapy , Craving/physiology , Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex , Treatment Outcome
11.
Front Aging Neurosci ; 14: 995000, 2022.
Article in English | MEDLINE | ID: mdl-36225892

ABSTRACT

Although primary degenerative diseases are the main cause of dementia, a non-negligible proportion of patients is affected by a secondary and potentially treatable cognitive disorder. Therefore, diagnostic tools able to early identify and monitor them and to predict the response to treatment are needed. Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological technique capable of evaluating in vivo and in "real time" the motor areas, the cortico-spinal tract, and the neurotransmission pathways in several neurological and neuropsychiatric disorders, including cognitive impairment and dementia. While consistent evidence has been accumulated for Alzheimer's disease, other degenerative cognitive disorders, and vascular dementia, to date a comprehensive review of TMS studies available in other secondary dementias is lacking. These conditions include, among others, normal-pressure hydrocephalus, multiple sclerosis, celiac disease and other immunologically mediated diseases, as well as a number of inflammatory, infective, metabolic, toxic, nutritional, endocrine, sleep-related, and rare genetic disorders. Overall, we observed that, while in degenerative dementia neurophysiological alterations might mirror specific, and possibly primary, neuropathological changes (and hence be used as early biomarkers), this pathogenic link appears to be weaker for most secondary forms of dementia, in which neurotransmitter dysfunction is more likely related to a systemic or diffuse neural damage. In these cases, therefore, an effort toward the understanding of pathological mechanisms of cognitive impairment should be made, also by investigating the relationship between functional alterations of brain circuits and the specific mechanisms of neuronal damage triggered by the causative disease. Neurophysiologically, although no distinctive TMS pattern can be identified that might be used to predict the occurrence or progression of cognitive decline in a specific condition, some TMS-associated measures of cortical function and plasticity (such as the short-latency afferent inhibition, the short-interval intracortical inhibition, and the cortical silent period) might add useful information in most of secondary dementia, especially in combination with suggestive clinical features and other diagnostic tests. The possibility to detect dysfunctional cortical circuits, to monitor the disease course, to probe the response to treatment, and to design novel neuromodulatory interventions in secondary dementia still represents a gap in the literature that needs to be explored.

12.
Front Hum Neurosci ; 16: 931727, 2022.
Article in English | MEDLINE | ID: mdl-36147295

ABSTRACT

Background: Sonographic mesenteric pattern in celiac disease (CD) suggests a hyperdynamic circulation. Despite the well-known CD-related neurological involvement, no study has systematically explored the cerebral hemodynamics to transcranial Doppler sonography. Materials and methods: Montreal Cognitive Assessment (MoCA) and 17-item Hamilton Depression Rating Scale (HDRS) were assessed in 15 newly diagnosed subjects with CD and 15 age-, sex-, and education-matched healthy controls. Cerebral blood flow (CBF) velocities and indices of resistivity (RI) and pulsatility (PI) from the middle cerebral artery (MCA), bilaterally, and the basilar artery (BA) were recorded. We also assessed cerebral vasomotor reactivity (CVR) through the breath-holding test (BHT). Results: Worse scores of MoCA and HDRS were found in patients compared to controls. Although patients showed higher values of CBF velocity from MCA bilaterally compared to controls, both at rest and after BHT, no comparison reached a statistical significance, whereas after BHT both RI and PI from BA were significantly higher in patients. A significant negative correlation between both indices from BA and MoCA score were also noted. Conclusion: These treatment-naïve CD patients may show some subtle CVR changes in posterior circulation, thus possibly expanding the spectrum of pathomechanisms underlying neuroceliac disease and in particular gluten ataxia. Subclinical identification of cerebrovascular pathology in CD may help adequate prevention and early management of neurological involvement.

13.
World J Clin Cases ; 10(17): 5929-5933, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35979128

ABSTRACT

We have read with interest the publication that describes the available data related to the use of neuromodulation strategies for the treatment of post-traumatic stress disorder (PTSD). Despite treatment advances, however, a substantial proportion of PTSD patients receiving psychological and/or pharmacological treatment do not reach an adequate clinical response. In their paper, the authors draw attention to the current understanding of the use of repetitive transcranial magnetic stimulation (rTMS) as a potential treatment for PTSD. Most of the previous studies indeed applied both inhibitory (1 Hz) and excitatory (> 1 Hz, up to 20 Hz) rTMS to the right and/or left dorsolateral prefrontal cortex. Despite larger therapeutic effects observed when high-frequency stimulation was applied, the question of which side and frequency of stimulation is the most successful is still debated. The authors also reported on the after-effect of rTMS related to neuroplasticity and identified the intermittent theta burst stimulation as a technique of particular interest because of it showed the most effective improvement on PTSD symptoms. However, although numerous studies have highlighted the possible beneficial use of rTMS protocols for PTSD, the exact mechanism of action remains unclear. In their conclusions, the authors stated that rTMS has been demonstrated to be effective for the treatment of PTSD symptoms. Nevertheless, we believe that further research with homogeneous samples, standardized protocols, and objective outcome measures is needed to identify specific therapeutic targets and to better define significant changes when active and sham stimulation procedures are compared.

14.
Antioxidants (Basel) ; 11(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35883716

ABSTRACT

High-grade gliomas are the most fatal brain tumors. Grade 4 gliomas are called glioblastoma multiforme (GBM), which are associated with the poorest survival and a 5-year survival rate of less than 4%. Many patients with GBM developed concomitant cognitive dysfunctions and epilepsy. Although the cognitive decline is well defined in glioblastomas, the neurotoxic factors underlying this pathology are not well understood in GBM patients. In this study, we aimed to investigate whether GBM-derived exosomes play a role in neuronal toxicity. For this purpose, exosomes obtained from T98G and U373 GBM cells were applied to primary neuron culture at different concentrations. Subsequently, MTT, LDH, GSH, TAS, and TOS tests were performed. Both GBM-derived exosomes induced a dose-dependent and statistically significant increase of LDH release in cerebellar neurons. MTT assay revealed as both T98G and U373 GBM-derived exosomes induced dose-dependent neurotoxic effects in cerebellar neurons. To the best of our knowledge, this study is the first study demonstrating the toxic potential of GBM-derived exosomes to primary neurons, which may explain the peritumoral edema and cognitive decline in GBM patients.

15.
J Clin Med ; 11(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566417

ABSTRACT

BACKGROUND: a reduced intracortical facilitation (ICF), a transcranial magnetic stimulation (TMS) measure largely mediated by glutamatergic neurotransmission, was observed in subjects affected by isolated REM sleep behavior disorder (iRBD). However, direct comparison between iRBD and Parkinson's disease (PD) with RBD is currently lacking. METHODS: resting motor threshold, contralateral cortical silent period, amplitude and latency of motor evoked potentials, short-interval intracortical inhibition, and intracortical facilitation (ICF) were recorded from 15 drug-naïve iRBD patients, 15 drug-naïve PD with RBD patients, and 15 healthy participants from the right First Dorsal Interosseous muscle. REM sleep atonia index (RAI), Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Epworth Sleepiness Scale (ESS) were assessed. RESULTS: Groups were similar for sex, age, education, and patients for RBD duration and RAI. Neurological examination, MMSE, ESS, and GDS were normal in iRBD patients and controls; ESS scored worse in PD patients, but with no difference between groups at post hoc analysis. Compared to controls, both patient groups exhibited a significantly decreased ICF, without difference between them. CONCLUSIONS: iRBD and PD with RBD shared a reduced ICF, thus suggesting the involvement of glutamatergic transmission both in subjects at risk for degeneration and in those with an overt α-synucleinopathy.

16.
Genes (Basel) ; 13(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35456509

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide and is characterized by a progressive decline in cognitive functions. Accumulation of amyloid-ß plaques and neurofibrillary tangles are a typical feature of AD neuropathological changes. The entorhinal cortex (EC) is the first brain area associated with pathologic changes in AD, even preceding atrophy of the hippocampus. In the current study, we have performed a meta-analysis of publicly available expression data sets of the entorhinal cortex (EC) in order to identify potential pathways underlying AD pathology. The meta-analysis identified 1915 differentially expressed genes (DEGs) between the EC from normal and AD patients. Among the downregulated DEGs, we found a significant enrichment of biological processes pertaining to the "neuronal system" (R-HSA-112316) and the "synaptic signaling" (GO:0099536), while the "regulation of protein catabolic process" (GO:00042176) and "transport of small molecules" (R-HSA-382551) resulted in enrichment among both the upregulated and downregulated DEGs. Finally, by means of an in silico pharmacology approach, we have prioritized drugs and molecules potentially able to revert the transcriptional changes associated with AD pathology. The drugs with a mostly anti-correlated signature were: efavirenz, an anti-retroviral drug; tacrolimus, a calcineurin inhibitor; and sirolimus, an mTOR inhibitor. Among the predicted drugs, those potentially able to cross the blood-brain barrier have also been identified. Overall, our study found a disease-specific set of dysfunctional biological pathways characterizing the EC in AD patients and identified a set of drugs that could in the future be exploited as potential therapeutic strategies. The approach used in the current study has some limitations, as it does not account for possible post-transcriptional events regulating the cellular phenotype, and also, much clinical information about the samples included in the meta-analysis was not available. However, despite these limitations, our study sets the basis for future investigations on the pathogenetic processes occurring in AD and proposes the repurposing of currently used drugs for the treatment of AD patients.


Subject(s)
Alzheimer Disease , Entorhinal Cortex , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Atrophy/pathology , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Hippocampus/metabolism , Humans
17.
Int J Food Sci Nutr ; 73(6): 821-828, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35285390

ABSTRACT

Coffee intake has been recently associated with better cognition and mood in mild vascular cognitive impairment (mVCI). As tobacco can reduce the caffeine half-life, we excluded smokers from the original sample. Hamilton Depression Rating Scale (HDRS), mini-mental state examination (MMSE), Stroop Colour-Word Interference Test (Stroop), activities of daily living (ADL0) and instrumental ADL were the outcome measures. Significant differences were observed in higher consumption groups (moderate intake for HDRS; high intake for MMSE and Stroop) compared to the other groups, as well as in age and education. With age, education and coffee used as independent predictors, and HDRS, Stroop and MMSE as dependent variables, a correlation was found between age and both MMSE and Stroop, as well as between education and MMSE and between HDRS and Stroop; coffee intake negatively correlated with HDRS and Stroop. Higher coffee consumption was associated with better psycho-cognitive status among non-smokers with mVCI.


Subject(s)
Coffee , Vascular Diseases , Activities of Daily Living , Cognition , Humans , Non-Smokers
18.
J Integr Neurosci ; 21(1): 8, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35164444

ABSTRACT

We report on our remote speech therapy experience in post-stroke aphasia. The aim was to test the feasibility and utility of telerehabilitation to support future randomized controlled trials. Post-stroke aphasia is a common and disabling speech disorder, which significantly affects patients' and caregivers' health and quality of life. Due to COVID-19 pandemic, most of the conventional speech therapy approaches had to stop or "switch" into telerehabilitation procedures to ensure the safety of patients and operators but, concomitantly, the best rehabilitation level possible. Here, we planned a 5-month telespeech therapy programme, twice per week, of a patient with non-fluent aphasia following an intracerebral haemorrhage. Overall, treatment adherence based on the operator's assessments was high, and incomplete adherence for technical problems occurred very rarely. In line with the patient's feedback, acceptability was also positive, since he was constantly motivated during the sessions and the exercises performed autonomously, as confirmed by the speech therapist and caregiver, respectively. Moreover, despite the sequelae from the cerebrovascular event, evident in some writing tests due to the motor deficits in his right arm and the disadvantages typical of all telepractices, more relevant results were achieved during the telerehabilitation period compared to those of the "face-to-face" therapy before the COVID-19 outbreak. The telespeech therapy performed can be considered successful and the patient was able to return to work. Concluding, we support it as a feasible approach offering patients and their families the opportunity to continue the speech and language rehabilitation pathway, even at the time of pandemic.


Subject(s)
Aphasia/rehabilitation , Stroke Rehabilitation/methods , Stroke/complications , Telerehabilitation , Aphasia/etiology , COVID-19 , Humans , Language Therapy/methods , Male , Middle Aged , Pandemics , Speech Therapy/methods , Treatment Outcome
19.
PLoS One ; 16(12): e0261373, 2021.
Article in English | MEDLINE | ID: mdl-34914787

ABSTRACT

BACKGROUND: Celiac disease (CD) is now viewed as a systemic disease with multifaceted clinical manifestations. Among the extra-intestinal features, neurological and neuropsychiatric symptoms are still a diagnostic challenge, since they can precede or follow the diagnosis of CD. In particular, it is well known that some adults with CD may complain of cognitive symptoms, that improve when the gluten-free diet (GFD) is started, although they may re-appear after incidental gluten intake. Among the neurophysiological techniques, motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) can non-invasively probe in vivo the excitation state of cortical areas and cortico-spinal conductivity, being also able to unveil preclinical impairment in several neurological and psychiatric disorders, as well as in some systemic diseases affecting the central nervous system (CNS), such as CD. We previously demonstrated an intracortical disinhibition and hyperfacilitation of MEP responses to TMS in newly diagnosed patients. However, no data are available on the central cholinergic functioning indexed by specific TMS measures, such as the short-latency afferent inhibition (SAI), which might represent the neurophysiological correlate of cognitive changes in CD patients, also at the preclinical level. METHODS: Cognitive and depressive symptoms were screened by means of the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively, in 15 consecutive de novo CD patients and 15 healthy controls. All patients were on normal diet at the time of the enrolment. Brain computed tomography (CT) was performed in all patients. SAI, recorded at two interstimulus intervals (2 and 8 ms), was assessed as the percentage amplitude ratio between the conditioned and the unconditioned MEP response. Resting motor threshold, MEP amplitude and latency, and central motor conduction time were also measured. RESULTS: The two groups were comparable for age, sex, anthropometric features, and educational level. Brain CT ruled out intracranial calcifications and clear radiological abnormalities in all patients. Scores at MoCA and HDRS were significantly worse in patients than in controls. The comparison of TMS data between the two groups revealed no statistically significant difference for all measures, including SAI at both interstimulus intervals. CONCLUSIONS: Central cholinergic functioning explored by the SAI of the motor cortex resulted to be not affected in these de novo CD patients compared to age-matched healthy controls. Although the statistically significant difference in MoCA, an overt cognitive impairment was not clinically evident in CD patients. Coherently, to date, no study based on TMS or other diagnostic techniques has shown any involvement of the central acetylcholine or the cholinergic fibers within the CNS in CD. This finding might add support to the vascular inflammation hypothesis underlying the so-called "gluten encephalopathy", which seems to be due to an aetiology different from that of the cholinergic dysfunction. Longitudinal studies correlating clinical, TMS, and neuroimaging data, both before and after GFD, are needed.


Subject(s)
Celiac Disease/physiopathology , Cholinergic Neurons/physiology , Transcranial Magnetic Stimulation/methods , Adult , Afferent Pathways/physiology , Celiac Disease/diet therapy , Cholinergic Agents/pharmacology , Cognition/physiology , Cognitive Dysfunction/physiopathology , Electromyography/methods , Evoked Potentials, Motor/physiology , Female , Glutens/metabolism , Humans , Male , Motor Cortex/physiology , Neural Inhibition/physiology , Reaction Time/physiology
20.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34260684

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the newly discovered coronavirus, SARS-CoV-2. Increased severity of COVID-19 has been observed in patients with diabetes mellitus (DM). This study aimed to identify common transcriptional signatures, regulators and pathways between COVID-19 and DM. We have integrated human whole-genome transcriptomic datasets from COVID-19 and DM, followed by functional assessment with gene ontology (GO) and pathway analyses. In peripheral blood mononuclear cells (PBMCs), among the upregulated differentially expressed genes (DEGs), 32 were found to be commonly modulated in COVID-19 and type 2 diabetes (T2D), while 10 DEGs were commonly downregulated. As regards type 1 diabetes (T1D), 21 DEGs were commonly upregulated, and 29 DEGs were commonly downregulated in COVID-19 and T1D. Moreover, 35 DEGs were commonly upregulated in SARS-CoV-2 infected pancreas organoids and T2D islets, while 14 were commonly downregulated. Several GO terms were found in common between COVID-19 and DM. Prediction of the putative transcription factors involved in the upregulation of genes in COVID-19 and DM identified RELA to be implicated in both PBMCs and pancreas. Here, for the first time, we have characterized the biological processes and pathways commonly dysregulated in COVID-19 and DM, which could be in the next future used for the design of personalized treatment of COVID-19 patients suffering from DM as comorbidity.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , SARS-CoV-2/genetics , Transcriptome/genetics , COVID-19/pathology , COVID-19/virology , Computational Biology , Diabetes Mellitus/pathology , Gene Expression Profiling , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Protein Interaction Maps/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...