Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(6): 5093-5108, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38476002

ABSTRACT

Leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have provided strong evidence that LTA4H is an attractive drug target for the treatment of chronic inflammatory diseases. Here, we describe the transformation of compound 2, a fragment-like hit, into the potent inhibitor of LTA4H 3. Our strategy involved two key steps. First, we aimed to increase the polarity of fragment 2 to improve its drug-likeness, particularly its solubility, while preserving both its promising potency and low molecular weight. Second, we utilized structural information and incorporated a basic amino function, which allowed for the formation of an essential hydrogen bond with Q136 of LTA4H and consequently enhanced the potency. Compound 3 exhibited exceptional selectivity and showed oral efficacy in a KRN passive serum-induced arthritis model in mice. The anticipated human dose to achieve 90% target engagement at the trough concentration was determined to be 40 mg administered once daily.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Mice , Humans , Animals , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Leukotriene B4
2.
J Med Chem ; 66(23): 16410-16425, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38015154

ABSTRACT

The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor LYS006 is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties. Selective O-phosphorylation of the (R)-enantiomers in blood led to clearance values above the hepatic blood flow, whereas the (S)-enantiomers were unaffected and exhibited satisfactory metabolic stabilities in vivo. Introduction of two pyrazole rings led to compound (S)-2 with a more balanced distribution of polarity across the molecule, exhibiting high selectivity and excellent potency in vitro and in vivo. Furthermore, compound (S)-2 showed favorable profiles in 16-week IND-enabling toxicology studies in dogs and rats. Based on allometric scaling and potency in whole blood, compound (S)-2 has the potential for a low oral efficacious dose administered once daily.


Subject(s)
Epoxide Hydrolases , Liver , Rats , Animals , Dogs , Epoxide Hydrolases/metabolism , Liver/metabolism , Microsomes, Liver/metabolism
3.
J Med Chem ; 64(4): 1889-1903, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33592148

ABSTRACT

The cytosolic metalloenzyme leukotriene A4 hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B4 (LTB4). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet. Herein, we disclose the discovery and preclinical profile of LYS006, a highly potent and selective LTA4H inhibitor. A focused fragment screen identified hits that could be cocrystallized with LTA4H and inspired a fragment merging. Further optimization led to chiral amino acids and ultimately to LYS006, a picomolar LTA4H inhibitor with exquisite whole blood potency and long-lasting pharmacodynamic effects. Due to its high selectivity and its ability to fully suppress LTB4 generation at low exposures in vivo, LYS006 has the potential for a best-in-class LTA4H inhibitor and is currently investigated in phase II clinical trials in inflammatory acne, hidradenitis suppurativa, ulcerative colitis, and NASH.


Subject(s)
Aminobutyrates/therapeutic use , Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Pyridines/therapeutic use , Aminobutyrates/chemical synthesis , Aminobutyrates/pharmacokinetics , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Arthritis, Experimental/drug therapy , Dogs , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Inflammation/drug therapy , Male , Mice, Inbred C57BL , Molecular Structure , Pyridines/chemical synthesis , Pyridines/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship
4.
J Invest Dermatol ; 140(12): 2421-2432.e10, 2020 12.
Article in English | MEDLINE | ID: mdl-32387270

ABSTRACT

Hidradenitis suppurativa (HS) is a chronic, recurring inflammatory dermatosis characterized by abscesses, deep-seated nodules, sinus tracts, and fibrosis in skin lesions around hair follicles of the axillary, inguinal, and anogenital regions. Whereas the exact pathogenesis remains poorly defined, clear evidence suggests that HS is a multifactorial inflammatory disease characterized by innate and adaptive immune components. Bioactive lipids are important regulators of cutaneous homeostasis, inflammation, and resolution of inflammation. Alterations in the lipid mediator profile can lead to malfunction and cutaneous inflammation. We used targeted lipidomics to analyze selected omega-3 and omega-6 polyunsaturated fatty acids in skin of patients with HS and of healthy volunteers. Lesional HS skin displayed enrichment of 5-lipoxygenase (LO)‒derived metabolites, especially leukotriene B4. In addition, 15-LO‒derived metabolites were underrepresented in HS lesions. Changes in the lipid mediator profile were accompanied by transcriptomic dysregulation of the 5-LO and 15-LO pathways. Hyperactivation of the 5-LO pathway in lesional macrophages identified these cells as potential sources of leukotriene B4, which may cause neutrophil influx and activation. Furthermore, leukotriene B4-induced mediators and pathways were elevated in HS lesions, suggesting a contribution of this proinflammatory lipid meditator to the pathophysiology of HS.


Subject(s)
Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/metabolism , Hidradenitis Suppurativa/immunology , Leukotriene B4/metabolism , Skin/pathology , Adult , Aged , Biopsy , Cells, Cultured , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/analysis , Fatty Acids, Omega-6/metabolism , Female , Gene Expression Profiling , Hidradenitis Suppurativa/pathology , Hidradenitis Suppurativa/surgery , Humans , Inflammation/immunology , Inflammation/pathology , Leukotriene B4/immunology , Lipid Metabolism/genetics , Lipid Metabolism/immunology , Lipidomics , Male , Middle Aged , Primary Cell Culture , Signal Transduction/genetics , Signal Transduction/immunology , Skin/chemistry , Skin/immunology , Up-Regulation , Young Adult
5.
Sci Transl Med ; 11(497)2019 06 19.
Article in English | MEDLINE | ID: mdl-31217337

ABSTRACT

Increased airway hyperresponsiveness and epithelial remodeling in asthmatic LTA4H-KO mice may be mediated by CysLTs rather than elevated tripeptide PGP.


Subject(s)
Asthma , Respiratory Hypersensitivity , Animals , Extracellular Matrix , Mice
6.
Sci Rep ; 7(1): 13591, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051536

ABSTRACT

Leukotriene A4 Hydrolase (LTA4H) is a bifunctional zinc metalloenzyme that comprises both epoxide hydrolase and aminopeptidase activity, exerted by two overlapping catalytic sites. The epoxide hydrolase function of the enzyme catalyzes the biosynthesis of the pro-inflammatory lipid mediator leukotriene (LT) B4. Recent literature suggests that the aminopeptidase function of LTA4H is responsible for degradation of the tripeptide Pro-Gly-Pro (PGP) for which neutrophil chemotactic activity has been postulated. It has been speculated that the design of epoxide hydrolase selective LTA4H inhibitors that spare the aminopeptidase pocket may therefore lead to more efficacious anti-inflammatory drugs. In this study, we conducted a high throughput screen (HTS) for LTA4H inhibitors and attempted to rationally design compounds that would spare the PGP degrading function. While we were able to identify compounds with preference for the epoxide hydrolase function, absolute selectivity was not achievable for highly potent compounds. In order to assess the relevance of designing such aminopeptidase-sparing LTA4H inhibitors, we studied the role of PGP in inducing inflammation in different settings in wild type and LTA4H deficient (LTA4H KO) animals but could not confirm its chemotactic potential.  Attempting to design highly potent epoxide hydrolase selective LTA4H inhibitors, therefore seems to be neither feasible nor relevant.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Oligopeptides/metabolism , Proline/analogs & derivatives , Aminopeptidases/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Catalytic Domain , Crystallography, X-Ray , Drug Design , Epoxide Hydrolases/metabolism , High-Throughput Screening Assays/methods , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/metabolism , Neutrophils/pathology , Pneumonia/metabolism , Pneumonia/pathology , Proline/metabolism , Structure-Activity Relationship
7.
Mol Metab ; 3(5): 554-64, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25061560

ABSTRACT

11ß-Hydroxysteroid dehydrogenase-1 (11ß-HSD1) plays a key role in glucocorticoid receptor (GR) activation. Besides, it metabolizes some oxysterols and bile acids (BAs). The GR regulates BA homeostasis; however, the impact of impaired 11ß-HSD1 activity remained unknown. We profiled plasma and liver BAs in liver-specific and global 11ß-HSD1-deficient mice. 11ß-HSD1-deficiency resulted in elevated circulating unconjugated BAs, an effect more pronounced in global than liver-specific knockout mice. Gene expression analyses revealed decreased expression of the BA-CoA ligase Fatp5, suggesting impaired BA amidation. Reduced organic anion-transporting polypeptide-1A1 (Oatp1a1) and enhanced organic solute-transporter-ß (Ostb) mRNA expression were observed in livers from global 11ß-HSD1-deficient mice. The impact of 11ß-HSD1-deficiency on BA homeostasis seems to be GR-independent because intrahepatic corticosterone and GR target gene expression were not substantially decreased in livers from global knockout mice. Moreover, Fatp5 expression in livers from hepatocyte-specific GR knockout mice was unchanged. The results revealed a role for 11ß-HSD1 in BA homeostasis.

8.
Neuroendocrinology ; 100(1): 17-25, 2014.
Article in English | MEDLINE | ID: mdl-24903002

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate are widely used psychoactive substances. MDMA primarily enhances serotonergic neurotransmission, and methylphenidate increases dopamine but has no serotonergic effects. Both drugs also increase norepinephrine, resulting in sympathomimetic properties. Here we studied the effects of MDMA and methylphenidate on 24-hour plasma steroid profiles. 16 healthy subjects (8 men, 8 women) were treated with single doses of MDMA (125 mg), methylphenidate (60 mg), MDMA + methylphenidate, and placebo on 4 separate days using a cross-over study design. Cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycorticosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), androstenedione, and testosterone were repeatedly measured up to 24 h using liquid chromatography-tandem mass spectroscopy. MDMA significantly increased the plasma concentrations of cortisol, corticosterone, 11-dehydrocorticosterone, and 11-deoxycorticosterone and also tended to moderately increase aldosterone levels compared with placebo. MDMA also increased the sum of cortisol + cortisone and the cortisol/cortisone ratio, consistent with an increase in glucocorticoid production. MDMA did not alter the levels of cortisone, DHEA, DHEAS, androstenedione, or testosterone. Methylphenidate did not affect any of the steroid concentrations, and it did not change the effects of MDMA on circulating steroids. In summary, the serotonin releaser MDMA has acute effects on circulating steroids. These effects are not observed after stimulation of the dopamine and norepinephrine systems with methylphenidate. The present findings support the view that serotonin rather than dopamine and norepinephrine mediates the acute pharmacologically induced stimulation of the hypothalamic-pituitary-adrenal axis in the absence of other stressors.


Subject(s)
Methylphenidate/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Psychotropic Drugs/pharmacology , Steroids/blood , Chromatography, Liquid , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Tandem Mass Spectrometry , Time Factors , Young Adult
9.
Am J Physiol Renal Physiol ; 306(1): F130-7, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24197062

ABSTRACT

Although the kidney is believed to play a minor role in bile acid (BA) excretion, chronic renal failure (CRF) has been reported to be associated with increased serum bile acid levels and alterations in BA homeostasis. The mechanisms for elevated BA levels are poorly understood in both clinical and experimental studies. This study was designed to examine the effects of naturally progressing CRF of longer duration on the hepatic and renal mRNA and protein levels of the BA-synthesizing enzyme Cyp7a1 and the BA transporters Ntcp, Bsep, Mrp3, Ost-α, and Ost-ß. Sprague-Dawley rats were randomized to the CRF group (⅚ nephrectomy) or to the sham-operated control group and were analyzed 8 wk after surgery. Results obtained in the CRF rats were compared with those obtained in rats that had undergone uninephrectomy (UNX). The CRF group exhibited significantly increased plasma cholesterol and BA concentrations. Hepatic Cyp7a1 mRNA and protein levels were almost identical in the two groups. Hepatic Mrp3, Ost-α, and Ost-ß expression was increased, suggesting increased basolateral efflux of bile acids into the blood. However, no such changes in BA transporter expression were observed in the remnant kidney. In UNX rats, similar changes in plasma BA levels and in the expression of BA transporters were found. We hypothesize that the increase in plasma BA is an early event in the progression of CRF and is caused by increased efflux across the basolateral hepatocyte membrane.


Subject(s)
Carrier Proteins/metabolism , Gene Expression Regulation/physiology , Intestinal Mucosa/metabolism , Kidney Failure, Chronic/metabolism , Liver/metabolism , Membrane Glycoproteins/metabolism , Animals , Carrier Proteins/genetics , Male , Membrane Glycoproteins/genetics , Random Allocation , Rats , Rats, Sprague-Dawley
10.
J Lipid Res ; 54(10): 2874-83, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23933573

ABSTRACT

11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) mediates glucocorticoid activation and is currently considered as therapeutic target to treat metabolic diseases; however, biomarkers to assess its activity in vivo are still lacking. Recent in vitro experiments suggested that human 11ß-HSD1 metabolizes the secondary bile acid 7-oxolithocholic acid (7-oxoLCA) to chenodeoxycholic acid (CDCA) and minor amounts of ursodeoxycholic acid (UDCA). Here, we provide evidence from in vitro and in vivo studies for a major role of 11ß-HSD1 in the oxidoreduction of 7-oxoLCA and compare its level and metabolism in several species. Hepatic microsomes from liver-specific 11ß-HSD1-deficient mice were devoid of 7-oxoLCA oxidoreductase activity. Importantly, circulating and intrahepatic levels of 7-oxoLCA and its taurine conjugate were significantly elevated in mouse models of 11ß-HSD1 deficiency. Moreover, comparative enzymology of 11ß-HSD1-dependent oxidoreduction of 7-oxoLCA revealed that the guinea-pig enzyme is devoid of 7-oxoLCA oxidoreductase activity. Unlike in other species, 7-oxoLCA and its glycine conjugate are major bile acids in guinea-pigs. In conclusion, the oxidoreduction of 7-oxoLCA and its conjugated metabolites are catalyzed by 11ß-HSD1, and the lack of this activity leads to the accumulation of these bile acids in guinea-pigs and 11ß-HSD1-deficient mice. Thus, 7-oxoLCA and its conjugates may serve as biomarkers of impaired 11ß-HSD1 activity.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Lithocholic Acid/analogs & derivatives , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/deficiency , Animals , Cricetinae , Dogs , Guinea Pigs , Humans , Lithocholic Acid/blood , Lithocholic Acid/metabolism , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Microsomes, Liver/enzymology , Molecular Docking Simulation , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Rats, Wistar , Species Specificity
11.
Biochem J ; 436(3): 621-9, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21453287

ABSTRACT

The oxidized bile acid 7-oxoLCA (7-oxolithocholic acid), formed primarily by gut micro-organisms, is reduced in human liver to CDCA (chenodeoxycholic acid) and, to a lesser extent, UDCA (ursodeoxycholic acid). The enzyme(s) responsible remained unknown. Using human liver microsomes, we observed enhanced 7-oxoLCA reduction in the presence of detergent. The reaction was dependent on NADPH and stimulated by glucose 6-phosphate, suggesting localization of the enzyme in the ER (endoplasmic reticulum) and dependence on NADPH-generating H6PDH (hexose-6-phosphate dehydrogenase). Using recombinant human 11ß-HSD1 (11ß-hydroxysteroid dehydrogenase 1), we demonstrate efficient conversion of 7-oxoLCA into CDCA and, to a lesser extent, UDCA. Unlike the reversible metabolism of glucocorticoids, 11ß-HSD1 mediated solely 7-oxo reduction of 7-oxoLCA and its taurine and glycine conjugates. Furthermore, we investigated the interference of bile acids with 11ß-HSD1-dependent interconversion of glucocorticoids. 7-OxoLCA and its conjugates preferentially inhibited cortisone reduction, and CDCA and its conjugates inhibited cortisol oxidation. Three-dimensional modelling provided an explanation for the binding mode and selectivity of the bile acids studied. The results reveal that 11ß-HSD1 is responsible for 7-oxoLCA reduction in humans, providing a further link between hepatic glucocorticoid activation and bile acid metabolism. These findings also suggest the need for animal and clinical studies to explore whether inhibition of 11ß-HSD1 to reduce cortisol levels would also lead to an accumulation of 7-oxoLCA, thereby potentially affecting bile acid-mediated functions.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Lithocholic Acid/analogs & derivatives , Microsomes, Liver/enzymology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Animals , Bile Acids and Salts/pharmacology , Cortisone/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Hydrocortisone/metabolism , Kinetics , Lithocholic Acid/metabolism , Male , Mice , NADP/metabolism , Oxidation-Reduction , Rats , Recombinant Proteins/metabolism
12.
Brain Res Dev Brain Res ; 154(1): 141-5, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15617763

ABSTRACT

Thyroid hormone deficiency during the critical period of neural differentiation produces permanent and severe alterations in the morphology and function of the nervous system leading to cretinism. Perinatal hypothyroidism results in permanent alterations of hippocampal synaptic functions in adult rats consequently causing learning and memory impairment. Mitogen-activated protein kinases (MAPKs) are a family of protein kinases that regulate essential cellular activities ranging from gene expression, mitosis, programmed cell death to plasticity and memory formation, but their involvement in perinatal hypothyroidism is not determined. The present work was designed to investigate MAPKs phosphorylation in hippocampus of congenital neonatal hypothyroid rats. Congenital hypothyroidism promotes an increase in extracellular signal-regulated kinases 1/2 (ERK 1/2) phosphorylation (+50%) and a decrease in p38(MAPK) phosphorylation (-50%) without changing in Jun N-terminal kinases (JNK) phosphorylation. Therefore, the congenital hypothyroidism model disturbs ERK 1/2 and p38(MAPK) phosphorylation pathways causing an important molecular alteration in the hippocampus. This event might be related, at least partially, to the deficits in hippocampal development and cognitive functions due neonatal congenital hypothyroidism.


Subject(s)
Genetic Predisposition to Disease/genetics , Hippocampus/enzymology , Hypothyroidism/complications , MAP Kinase Signaling System/physiology , Memory Disorders/enzymology , Animals , Animals, Newborn , Cell Differentiation/genetics , Congenital Hypothyroidism/enzymology , Congenital Hypothyroidism/genetics , Congenital Hypothyroidism/physiopathology , Disease Models, Animal , Down-Regulation/genetics , Female , Hippocampus/growth & development , Hippocampus/physiopathology , Hypothyroidism/physiopathology , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Memory Disorders/genetics , Memory Disorders/physiopathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Rats , Rats, Wistar , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...