Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Exp Dermatol ; 31(9): 1373-1384, 2022 09.
Article in English | MEDLINE | ID: mdl-35538596

ABSTRACT

Atopic dermatitis (AD) remains a highly heterogenous disorder with a multifactorial aetiology. Whilst keratinocytes are known to play a fundamental role in AD, their contribution to the overall immune landscape in moderate-to-severe AD is still poorly understood. In order to design new therapeutics, further investigation is needed into common disease pathways at the molecular level. We used publicly available whole-tissue RNAseq data (4 studies) and single-cell RNAseq keratinocyte data to identify genes/pathways that are involved in keratinocyte responses in AD and after dupilumab treatment. Transcripts present in both keratinocytes (single-cell) and whole-tissue, referred to as the keratinocyte-enriched lesional skin (KELS) genes, were analysed using functional/pathway analysis. Following statistical testing, 2049 genes (16.8%) were differentially expressed in KELS. Enrichment analyses predicted increases in not only type-1/type-2 immune signalling and chemoattraction, but also in EGF-dominated growth factor signalling. We identified complex crosstalk between keratinocytes and immune cells involving a dominant EGF family signature which converges on keratinocytes with potential immunomodulatory and chemotaxis-promoting consequences. Although keratinocytes express the IL4R, we observed no change in EGF signalling in KELS after three-month treatment with dupilumab, indicating that this pathway is not modulated by dupilumab immunotherapy. EGF family signalling is significantly dysregulated in AD lesions but is not associated with keratinocyte proliferation. EGF signalling pathways in AD require further study.


Subject(s)
Dermatitis, Atopic , Cell Proliferation , Epidermal Growth Factor/metabolism , Humans , Keratinocytes/metabolism , Signal Transduction , Skin/metabolism
3.
PLoS Pathog ; 17(7): e1009768, 2021 07.
Article in English | MEDLINE | ID: mdl-34329367

ABSTRACT

The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.


Subject(s)
Colon/immunology , Colon/parasitology , Intestinal Diseases, Parasitic/immunology , Macrophages/immunology , Trichuriasis/immunology , Animals , Intercellular Signaling Peptides and Proteins/immunology , Interleukin-4 Receptor alpha Subunit/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Trichuris/immunology
4.
J Allergy Clin Immunol ; 147(4): 1354-1368.e3, 2021 04.
Article in English | MEDLINE | ID: mdl-33011245

ABSTRACT

BACKGROUND: Staphylococcus aureus is the dominant infective trigger of atopic dermatitis (AD). How this bacterium drives type 2 allergic pathology in the absence of infection in patients with AD is unclear. OBJECTIVE: We sought to identify the S aureus-derived virulence factor(s) that initiates the cutaneous type 2-promoting immune response responsible for AD. METHODS: In vitro human keratinocyte cell culture, ex vivo human skin organ explants, and the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse were used as model systems to assess type 2-promoting immune responses to S aureus. Identification of the bioactive factor was accomplished using fast protein liquid chromatography and mass spectrometry. Bioactivity was confirmed by cloning and expression in an Escherichia coli vector system, and S aureus second immunoglobulin-binding protein (Sbi) mutant strains confirming loss of activity. RESULTS: S aureus was unique among staphylococcal species in its ability to induce the rapid release of constitutive IL-33 from human keratinocytes independent of the Toll-like receptor pathway. Using the eczema-prone Nishiki-nezumi Cinnamon/Tokyo University of Agriculture and Technology strain mouse model, we showed that IL-33 was essential for inducing the immune response to S aureus in vivo. By fractionation and candidate testing, we identified Sbi as the predominant staphylococcus-derived virulence factor that directly drives IL-33 release from human keratinocytes. Immunohistology of skin demonstrated that corneodesmosin, a component of corneodesmosomes that form key intercellular adhesive structures in the stratum corneum, was disrupted, resulting in reduction of skin barrier function. CONCLUSIONS: S aureus-derived Sbi is a unique type 2-promoting virulence factor capable of initiating the type 2-promoting cytokine activity underlying AD.


Subject(s)
Bacterial Proteins/immunology , Carrier Proteins/immunology , Dermatitis, Atopic/immunology , Interleukin-33/immunology , Keratinocytes/immunology , Staphylococcus aureus/immunology , Virulence Factors/immunology , Adult , Allergens/immunology , Ambrosia/immunology , Animals , Cells, Cultured , Humans , Mice , Pyroglyphidae/immunology , Staphylococcus aureus/pathogenicity
5.
ACS Nano ; 14(8): 10168-10186, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32658456

ABSTRACT

Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.


Subject(s)
Graphite , Nanostructures , Animals , Spleen , Tissue Distribution
6.
Front Microbiol ; 10: 2242, 2019.
Article in English | MEDLINE | ID: mdl-31608046

ABSTRACT

Staphylococcus aureus causes the majority of skin and soft tissue infections. Half of patients treated for primary skin infections suffer recurrences within 6 months despite appropriate antibiotic sensitivities and infection control measures. We investigated whether S. aureus internalized by human skin keratinocytes are effectively eradicated by standard anti-staphylococcal antibiotics. S. aureus, but not S. epidermidis, were internalized and survive within keratinocytes without inducing cytotoxicity or releasing the IL-33 danger signal. Except for rifampicin, anti-staphylococcal antibiotics in regular clinical use, including flucloxacillin, teicoplanin, clindamycin, and linezolid, did not kill internalized S. aureus, even at 20-fold their standard minimal inhibitory concentration. We conclude that internalization of S. aureus by human skin keratinocytes allows the bacteria to evade killing by most anti-staphylococcal antibiotics. Antimicrobial strategies, including antibiotic combinations better able to penetrate into mammalian cells are required if intracellular S. aureus are to be effectively eradicated and recurrent infections prevented.

7.
Sci Rep ; 9(1): 13087, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511552

ABSTRACT

The precise mechanism of hydrocortisone immune regulation in the management of colitis is poorly understood. Whilst not without limitations, its ability to suppress pathology and rapidly improve patient clinical outcome is key. We were interested in identifying early markers of therapeutic responsiveness in order to identify patients' refractory to therapy. Chronic Th1-driven colitis was induced in AKR/J mice using a parasite infection, Trichuris muris. 35 days post infection, mice were treated with low dose hydrocortisone (2 mg/kg/) i.p. on alternate days. Response to therapy was assessed at a systemic and tissue level day 45 post infection. Histopathology, gene and protein analysis was conducted to determine cytokine and transcriptional profiles. The colonic transcriptional profile in steroid treated mice showed significant upregulation of a small subset of T cell associated genes, in particular C/EBPß, CD4, IL7R and STAT5a. Despite no change in either transcription or protein production in downstream cytokines IFN γ, TNFα IL-17 and IL-10, hydrocortisone treatment significantly reduced colonic pathology and restored colonic length to naïve levels. As expected, steroid treatment of chronic gut inflammation generated significant immunosuppressive effects characterized by histological improvement. Low dose hydrocortisone induced significant upregulation of a subset of genes associated with T cell maintenance and regulation, including C/EBPß. These data suggest that enhanced expression of C/EBPß may be one of a subset of early markers demonstrating an immune regulatory response to hydrocortisone therapy, potentially by stabilization of Treg function. These observations contribute to our understanding of the immune landscape after steroid therapy, providing a potential markers of therapeutic responders and those refractory to hydrocortisone treatment.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Colitis/drug therapy , Colitis/metabolism , Gene Expression Regulation/drug effects , Hydrocortisone/pharmacology , Animals , Biomarkers/metabolism , Chronic Disease , Hydrocortisone/therapeutic use , Interleukin-1/biosynthesis , Male , Mice , Phenotype , Treatment Outcome , Up-Regulation/drug effects
8.
Immunol Cell Biol ; 95(2): 178-188, 2017 02.
Article in English | MEDLINE | ID: mdl-27559003

ABSTRACT

Infection and injury of the gut are associated with cell damage and release of molecules such as extracellular adenosine 5'-triphosphate (ATP), which is recognised by the purinergic P2X7 receptor (P2X7R). P2X7R is widely expressed in the gut by antigen-presenting cells (APCs) and epithelial cells, but the role of the P2X7R on epithelial cells is poorly understood. We investigated P2X7R in intestinal epithelium in vitro and in vivo using two model infections, Toxoplasma gondii and Trichinella spiralis. Lipopolysaccharide and ATP treatment of intestinal epithelial cells and infection with T. gondii in vitro did not promote inflammasome-associated interleukin-1ß (IL-1ß) or IL-18 secretion, but promoted C-C motif chemokine ligand 5 (CCL5), tumour necrosis factor-α and IL-6 production that were significantly reduced when the P2X7R was blocked. Similarly, in vivo, infection with either T. spiralis or T. gondii induced rapid upregulation of epithelial CCL5 in wild-type (wild-type (WT)) mice that was significantly reduced in P2X7R-/- littermate controls. The effects of reduced epithelial CCL5 were assayed by investigating recruitment of dendritic cells (DCs) to the epithelium. Infection induced a rapid recruitment of CD11c+CD103+ DC subsets into the epithelial layer of WT mice but not P2X7R-/- mice. In vitro chemotaxis assays and bone marrow chimeras demonstrated the importance of epithelial P2X7R in DC recruitment. P2X7R signalling in epithelial cells mediates chemokine responses to promote initiation of host immunity to infection.


Subject(s)
Gastrointestinal Tract/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Receptors, Purinergic P2X7/metabolism , Adaptive Immunity , Animals , Chemokine CCL5/biosynthesis , Chemotaxis , Dendritic Cells/metabolism , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Intestinal Mucosa/pathology , Male , Mice, Inbred C57BL , Parasite Load , Receptors, Purinergic P2X7/deficiency , T-Lymphocytes/immunology , Toxoplasma , Toxoplasmosis/immunology , Toxoplasmosis/parasitology , Toxoplasmosis/pathology
9.
Immunology ; 147(3): 292-304, 2016 03.
Article in English | MEDLINE | ID: mdl-26643862

ABSTRACT

Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis.


Subject(s)
Dendritic Cells/immunology , Homeostasis/immunology , Neuroimmunomodulation/immunology , TRPV Cation Channels/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Spleen/cytology , Spleen/immunology
11.
Front Neurosci ; 8: 23, 2014.
Article in English | MEDLINE | ID: mdl-24592205

ABSTRACT

The question of how the neural and immune systems interact in host defense is important, integrating a system that senses the whole body with one that protects. Understanding the mechanisms and routes of control could produce novel and powerful ways of promoting and enhancing normal functions as well as preventing or treating abnormal functions. Fragmentation of biological research into specialities has resulted in some failures in recognizing and understanding interactions across different systems and this is most striking across immunology, hematology, and neuroscience. This reductionist approach does not allow understanding of the in vivo orchestrated response generated through integration of all systems. However, many factors make the understanding of multisystem cross-talk in response to a threat difficult, for instance the nervous and immune systems share communication molecules and receptors for a wide range of physiological signals. But, it is clear that physical, hard-wired connections exist between the two systems, with the key link involving sensory, unmyelinated nerve fibers (c fibers) containing the neuropeptide calcitonin gene-related peptide (CGRP), and modified macrophages, mast cells and other immune and host defense cells in various locations throughout the body. In this review we will therefore focus on the induction of CGRP and its key role in the neuroimmune axis.

12.
BMC Genomics ; 14: 127, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23442222

ABSTRACT

BACKGROUND: Genetic susceptibility to colonic inflammation is poorly defined at the gene level. Although Genome Wide Association studies (GWAS) have identified loci in the human genome which confer susceptibility to Inflammatory Bowel Disease (Crohn's and Ulcerative Colitis), it is not clear if precise loci exist which confer susceptibility to inflammation at specific locations within the gut e.g. small versus large intestine. Susceptibility loci for colitis in particular have been defined in the mouse, although specific candidate genes have not been identified to date. We have previously shown that infection with Trichuris muris (T. muris) induces chronic colitis in susceptible mouse strains with clinical, histological, and immunological homology to human colonic Crohn's disease. We performed an integrative analysis of colitis susceptibility, using an F2 inter-cross of resistant (BALB/c) and susceptible (AKR) mice following T. muris infection. Quantitative Trait Loci (QTL), polymorphic and expression data were analysed alongside in silico workflow analyses to discover novel candidate genes central to the development and biology of chronic colitis. RESULTS: 7 autosomal QTL regions were associated with the establishment of chronic colitis following infection. 144 QTL genes had parental strain SNPs and significant gene expression changes in chronic colitis (expression fold-change ≥ +/-1.4). The T. muris QTL on chromosome 3 (Tm3) mapped to published QTL in 3 unrelated experimental models of colitis and contained 33 significantly transcribed polymorphic genes. Phenotypic pathway analysis, text mining and time-course qPCR replication highlighted several potential cis-QTL candidate genes in colitis susceptibility, including FcgR1, Ptpn22, RORc, and Vav3. CONCLUSION: Genetic susceptibility to induced colonic mucosal inflammation in the mouse is conserved at Tm3 and overlays Cdcs1.1. Genes central to the maintenance of intestinal homeostasis reside within this locus, implicating several candidates in susceptibility to colonic inflammation. Combined methodology incorporating genetic, transcriptional and pathway data allowed identification of biologically relevant candidate genes, with Vav3 newly implicated as a colitis susceptibility gene of functional relevance.


Subject(s)
Colitis/genetics , Genes, Helminth , Genome-Wide Association Study , Trichuris/genetics , Animals , Chromosome Mapping , Chromosomes/genetics , Colitis/parasitology , Genetic Predisposition to Disease , Genotype , Male , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Microsatellite Repeats , Multigene Family , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Trichuriasis/genetics , Trichuriasis/parasitology , Trichuris/pathogenicity
13.
J Crohns Colitis ; 6(9): 871-80, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22398079

ABSTRACT

BACKGROUND AND AIMS: Enteroendocrine cells sense gut luminal contents, and orchestrate digestive physiology whilst contributing to mucosal homeostasis and innate immunity. The terminal ileum is the key site of EEC expression but detailed assessment of their subtypes, lineage transcription factors and expression products has not been undertaken in terminal ileal Crohn's disease. Recent Crohn's disease gene wide association studies have linked the neuroendocrine transcription factor Phox2b; while autoantibodies to an enteroendocrine protein, ubiquitination protein 4a, have been identified as a disease behaviour biomarker. METHODS: Terminal ileal tissue from small or large bowel Crohn's disease and normal controls was analysed for enteroendocrine marker expression by immunohistochemistry and quantitative polymerase chain reaction. Inflammation was graded by endoscopic, clinical, histological and biochemical scoring. RESULTS: In small bowel disease, glucagon-like peptide 1 and chromogranin A cells were increased 2.5-fold (p=0.049) and 2-fold (p=0.031) respectively. Polypeptide YY cells were unchanged. Ileal enteroendocrine cell expression was unaffected in the presence of Crohn's colitis. Phox2b was co-localised to enteroendocrine cells and showed a 1.5-fold increase in ileal disease. Significant mRNA increases were noted for chromogranin A (3.3-fold; p=0.009), glucagon-like peptide 1 (3.1-fold; p=0.007) and ubiquitination protein 4a (2.2-fold; p=0.02). Neurogenin 3, an enteroendocrine transcription factor showed ~2 fold-upregulation (p=0.048). CONCLUSIONS: Enhanced enteroendocrine cell activity is present in small bowel disease, and observed in restricted cell lineages. This may impact on the epithelial immune response, cellular homeostasis and nutrient handling and influence appetite via increased satiety signalling in the gut-brain axis.


Subject(s)
Crohn Disease/genetics , Crohn Disease/metabolism , Enteroendocrine Cells/cytology , Enteroendocrine Cells/metabolism , Ileum/metabolism , Adult , Aged , Biomarkers , Chromogranin A/genetics , Chromogranin A/metabolism , Crohn Disease/pathology , Gene Expression , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Ileum/cytology , Male , Middle Aged , Peptide YY/metabolism , RNA, Messenger/metabolism , Severity of Illness Index , Statistics, Nonparametric , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Young Adult
14.
J Biol Chem ; 282(34): 24759-66, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17573354

ABSTRACT

Innate immune responses are critical in controlling viral infections. Viral proteins and nucleic acids have been shown to be recognized by pattern recognition receptors of the Toll-like receptor (TLR) family, triggering downstream signaling cascades that lead to cellular activation and cytokine production. Viral DNA is sensed by TLR9, and TLRs 3, 7, and 8 have been implicated in innate responses to RNA viruses by virtue of their ability to sense double-stranded (ds) RNA (TLR3) or single-stranded RNA (murine TLR7 and human TLR8). Viral and synthetic dsRNAs have also been shown to be a potent adjuvant, promoting enhanced adaptive immune responses, and this property is also dependent on their recognition by TLR3. It has recently been shown that mRNA that is largely single-stranded is a ligand for TLR3. Here we have investigated the ability of single-stranded homopolymeric nucleic acids to induce innate responses by murine immune cells. We show for the first time that polyinosinic acid (poly(I)) activates B lymphocytes, dendritic cells, and macrophages and that these responses are dependent on the expression of both TLR3 and the adaptor molecule, Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF). We therefore conclude that TLR3 is able to sense both single-stranded RNA and dsRNA.


Subject(s)
Poly I/metabolism , RNA, Double-Stranded/chemistry , RNA/chemistry , Toll-Like Receptor 3/metabolism , Animals , B-Lymphocytes/metabolism , Bronchi/cytology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Epithelial Cells/metabolism , Humans , Ligands , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
15.
Chem Immunol Allergy ; 90: 128-140, 2006.
Article in English | MEDLINE | ID: mdl-16210907

ABSTRACT

Gut nematode infection induces a dominant type 2 immune response, crypt hyperplasia and mucosal mastocytosis. Despite their strong association with nematode infection, the role of mast cells in the mechanism of worm expulsion is yet to be fully defined. Recent work suggests that they contribute to resistance, aiding the effector mechanisms which ultimately result in worm expulsion. Although it is widely accepted that both connective and mucosal mast cells arise from a common progenitor, it is clear that mucosal mastocytosis is dependent on the presence of type 2 cytokines such as interleukin 4 (IL-4), IL-9, IL-10 and IL-13. Importantly, it is now evident that mucosal mast cells can amplify this protective response, as well as contributing to intestinal pathology. Here we discuss current areas of interest in this field, including the potentially conflicting role that mast cells play in intestinal inflammation. We also highlight the significance of these responses to current ideas relating to parasite infection and allergy.


Subject(s)
Intestines/immunology , Intestines/parasitology , Mast Cells/immunology , Nematoda/immunology , Nematode Infections/immunology , Nematode Infections/parasitology , Animals , Cell Adhesion , Cell Movement , Humans , Intestines/pathology , Mast Cells/cytology
16.
Eur J Immunol ; 36(1): 95-106, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16323245

ABSTRACT

Influenza viruses are serious respiratory pathogens, responsible for half a million deaths each year. The viral surface haemagglutinin (HA) protein has been shown to be an important determinant of viral pathogenicity. HA is the virion attachment and fusion protein, and the major target for neutralizing antibodies; however, it is also involved in triggering innate responses that may have an important impact on the disease course. We have examined the role of the toll-like receptor (TLR) family in innate responses to influenza virus and influenza HA. TLR7 has recently been found to mediate recognition of influenza RNA. Here, we show for the first time that influenza HA of the H2 subtype induces innate responses in murine B lymphocytes via a MyD88-dependent pathway distinct from that involved in sensing viral RNA. We also show that inactivated influenza virus induces activation of human B cells. Our findings suggest that the molecule mediating these responses may be a novel member of the TLR family.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , B-Lymphocytes/immunology , Hemagglutinins, Viral/immunology , Influenza A virus/immunology , Lymphocyte Activation/immunology , Animals , Blotting, Western , Hemagglutinins, Viral/genetics , Humans , Interferons/biosynthesis , Interferons/immunology , Leukocytes, Mononuclear/immunology , Mice , Myeloid Differentiation Factor 88 , Toll-Like Receptors/immunology
17.
Blood ; 103(7): 2655-60, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-14604954

ABSTRACT

We have used the parasite helminth Trichinella spiralis to study the generation and differentiation of mast cell progenitors in the bone marrow of mice, as this infection triggers an intestinal mastocytosis which correlates with parasite expulsion. C-kit+ mast cell progenitors have previously been defined by methylcellulose colony-forming units and by limiting dilution assays in vitro. In vivo experiments have demonstrated the essential requirement by mast cells for specific integrin expression. We have defined 2 c-kit+ populations in the bone marrow, one of which coexpresses CD49d/beta7 integrin, a marker essential for small intestine immigration. We have confirmed the phenotype of these cells by using antagonistic anti-c-kit antibody in vivo. Our data show that the loss of c-kit+/beta7+ cells from the bone marrow correlates with their appearance in the blood and precedes detection of mature mast cells in the gut by 3 days. This exit correlates with an increase in soluble stem cell factor (SCF) in the serum, suggesting that the c-kit/SCF interaction may be chemotactic or haptotactic in nature. This study shows that during infection the bone marrow environment generates mast cells destined for the intestinal mucosa before their exit into the periphery, indicating a clear interplay between infection site and hematopoietic tissue.


Subject(s)
Bone Marrow Cells/immunology , Bone Marrow Cells/parasitology , Integrin alpha4/immunology , Mast Cells/immunology , Proto-Oncogene Proteins c-kit/immunology , Trichinella spiralis/immunology , Trichinellosis/immunology , Animals , Bone Marrow Cells/pathology , Disease Models, Animal , Immunoglobulin G/pharmacology , Integrin beta Chains/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Male , Mastocytosis/immunology , Mastocytosis/pathology , Mastocytosis/prevention & control , Mice , Mice, Inbred C57BL , Rats , Trichinellosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...