Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33649182

ABSTRACT

HTLV-1-associated myelopathy (HAM/TSP) is a chronic and progressive inflammatory disease of the central nervous system. The aim of our study was to identify genetic determinants related to the onset of HAM/TSP in the Japanese population. We conducted a genome-wide association study comprising 753 HAM/TSP patients and 899 asymptomatic HTLV-1 carriers. We also performed comprehensive genotyping of HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 genes using next-generation sequencing technology for 651 HAM/TSP patients and 804 carriers. A strong association was observed in HLA class I (P = 1.54 × 10-9) and class II (P = 1.21 × 10-8) loci with HAM/TSP. Association analysis using HLA genotyping results showed that HLA-C*07:02 (P = 2.61 × 10-5), HLA-B*07:02 (P = 4.97 × 10-10), HLA-DRB1*01:01 (P = 1.15 × 10-9) and HLA-DQB1*05:01 (P = 2.30 × 10-9) were associated with disease risk, while HLA-B*40:06 (P = 3.03 × 10-5), HLA-DRB1*15:01 (P = 1.06 × 10-5) and HLA-DQB1*06:02 (P = 1.78 × 10-6) worked protectively. Logistic regression analysis identified amino acid position 7 in the G-BETA domain of HLA-DRB1 as strongly associated with HAM/TSP (P = 9.52 × 10-10); individuals homozygous for leucine had an associated increased risk of HAM/TSP (odds ratio, 9.57), and proline was protective (odds ratio, 0.65). Both associations were independent of the known risk associated with proviral load. DRB1-GB-7-Leu was not significantly associated with proviral load. We have identified DRB1-GB-7-Leu as a genetic risk factor for HAM/TSP development independent of proviral load. This suggests that the amino acid residue may serve as a specific marker to identify the risk of HAM/TSP even without knowledge of proviral load. In light of its allele frequency worldwide, this biomarker will likely prove useful in HTLV-1 endemic areas across the globe.


Subject(s)
Genome-Wide Association Study , HLA Antigens/genetics , Human T-lymphotropic virus 1/pathogenicity , Paraparesis, Tropical Spastic/genetics , Chromosome Mapping , Human T-lymphotropic virus 1/isolation & purification , Humans , Japan , Polymorphism, Single Nucleotide , Viral Load
2.
PLoS Negl Trop Dis ; 12(2): e0006202, 2018 02.
Article in English | MEDLINE | ID: mdl-29447178

ABSTRACT

Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS.


Subject(s)
Asian People/genetics , Dengue Virus/genetics , Dengue/genetics , Genome, Viral/genetics , Genome-Wide Association Study , Severe Dengue/genetics , Adolescent , Adult , Asia, Southeastern , Basic Helix-Loop-Helix Transcription Factors/genetics , Carrier Proteins/genetics , Cell Line , Cell Nucleus/virology , Child, Preschool , Cohort Studies , Dengue/virology , Female , Gene Expression , Genetic Predisposition to Disease , Genotype , Humans , Infant , Male , Nerve Tissue Proteins/genetics , Odds Ratio , Protein Phosphatase 2/genetics , Repressor Proteins/genetics , Serogroup , Severe Dengue/ethnology , Sulfotransferases , Thailand , Type C Phospholipases/genetics , Viral Nonstructural Proteins/genetics , Viral Proteins/genetics , Young Adult
3.
Nat Genet ; 47(11): 1304-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26437031

ABSTRACT

Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.


Subject(s)
DNA Methylation , Exome/genetics , Genome, Human/genetics , Leukemia-Lymphoma, Adult T-Cell/genetics , Sequence Analysis, DNA/methods , Transcriptome/genetics , Adult , Amino Acid Sequence , DNA Copy Number Variations , Gene Products, tax/genetics , HEK293 Cells , Host-Pathogen Interactions/genetics , Human T-lymphotropic virus 1/genetics , Human T-lymphotropic virus 1/physiology , Humans , Jurkat Cells , Leukemia-Lymphoma, Adult T-Cell/virology , Molecular Sequence Data , Mutation , Sequence Homology, Amino Acid , Signal Transduction/genetics , Survival Analysis , T-Lymphocytes/metabolism , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...