Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 3(1): 16, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31925329

ABSTRACT

Intravitreal (IVT) injection has become the standard route for drug administration in retinal diseases. However, the ability to measure biodistribution of ocular therapeutics in large species remains limited, due to the invasive nature of some techniques or their lack of spatial information. The aim of this study was to develop in cynomolgus monkeys a non-invasive fluorescence imaging technology that enables tracking of IVT-dosed drugs and could be easily translated into humans. Here, we show a proof-of-concept for labeled ranibizumab with observed half-lives of 3.34 and 4.52 days at the retina and in the vitreous, respectively. We further investigate a long acting anti-VEGF antibody, which remains as an agglomerate with some material leaking out until the end of the study at Day 35. Overall, we were able to visualize and measure differences in the in vivo behavior between short and long-acting antibodies, demonstrating the power of the technology for ocular pharmacokinetics.


Subject(s)
Eye/drug effects , Molecular Imaging , Pharmacokinetics , Animals , Molecular Imaging/methods , Optical Imaging , Primates , Proof of Concept Study , Ranibizumab/administration & dosage , Ranibizumab/pharmacokinetics , Tissue Distribution , Vascular Endothelial Growth Factor A/antagonists & inhibitors
2.
Mol Ther Methods Clin Dev ; 8: 105-120, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29359172

ABSTRACT

Retinitis pigmentosa is a form of retinal degeneration usually caused by genetic mutations affecting key functional proteins. We have previously demonstrated efficacy in a mouse model of RLBP1 deficiency with a self-complementary AAV8 vector carrying the gene for human RLBP1 under control of a short RLBP1 promoter (CPK850).1 In this article, we describe the nonclinical safety profile of this construct as well as updated efficacy data in the intended clinical formulation. In Rlbp1-/- mice dosed at a range of CPK850 levels, a minimum efficacious dose of 3 × 107 vg in a volume of 1 µL was observed. For safety assessment in these and Rlbp1+/+ mice, optical coherence tomography (OCT) and histopathological analysis indicated retinal thinning that appeared to be dose-dependent for both Rlbp1 genotypes, with no qualitative difference noted between Rlbp1+/+ and Rlbp1-/- mice. In a non-human primate study, RLBP1 mRNA expression was detected and dose dependent intraocular inflammation and retinal thinning were observed. Inflammation resolved slowly over time and did not appear to be exacerbated in the presence of anti-AAV8 antibodies. Biodistribution was evaluated in rats and satellite animals in the non-human primate study. The vector was largely detected in ocular tissues and low levels in the optic nerve, superior colliculus, and lateral geniculate nucleus, with limited distribution outside of these tissues. These data suggest that an initial subretinal dose of ∼3 × 107 vg/µL CPK850 can safely be used in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...