Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 914: 169862, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185141

ABSTRACT

Water shortages, exacerbated by climate change, are posing a major global challenge, particularly impacting the agricultural sector. A growing interest is raised towards reclaimed wastewater (RWW) as an alternative irrigation source, capable of exploiting also the nutrient content through the fertigation practice. However, a prioritization methodology for selecting the most appropriate wastewater treatment plants (WWTPs) for implementing direct RWW reuse is currently missing. Such prioritization would benefit water utilities, often managing several WWTPs, and policymakers in optimizing economic asset allocation. In this work, a prioritization framework is proposed to evaluate WWTPs' suitability for implementing direct RWW reuse considering both WWTP and surrounding territory characteristics. This procedure consists of four key steps. Firstly, a techno-economic model was developed, in which monthly mass balances on water and nutrients are solved by matching crop requirements, rainfall conditions, and effluent characteristics. Economic suitability was quantified considering economic benefits due to savings in freshwater resource, mineral fertilizers and avoided greenhouse gases emissions, but also losses in crop yield due to RWW salinity content. Secondly, a classification procedure was coded to select representative WWTPs among a set of WWTPs, based on their size, presence of nutrient removal processes, and type of crops in their surroundings. The techno-economic model was then applied to these selected WWTPs. Thirdly, input parameters' relevance in determining WWTP suitability for RWW reuse was ranked. Finally, scenario analyses were conducted to study the influence of rainfall patterns and nutrient treatment removal on the RWW reuse feasibility. The type of crops surrounding the WWTPs and RWW salinity content resulted to be crucial elements in determining WWTPs suitability for RWW reuse implementation. The proposed methodology proved to be an effective support tool for policymakers and water utilities to assess the techno-economic feasibility of direct RWW reuse, generalizing results to several combinations of WWTPs and crops.

2.
Chemosphere ; 325: 138259, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36871805

ABSTRACT

The increasing overexploitation and pollution of freshater resources are potential threats for public health, causing cross-contamination among the interconnected environmental compartments (freshwater, soil, crops). In particular, contaminants of emerging concern (CECs) originating from anthropic activities are not completely removed by wastewater treatments plants. This leads to their presence in drinking water (DW) sources, soil and crops intended for human consumption due to discharges of treated wastewater in surface waters and direct wastewater reuse practices. Currently, health risk assessments are limited to single exposure sources without considering the multiple exposure routes to which humans are subjected. For instance, among CECs, bisphenol A (BPA) and nonylphenol (NP), respectively, adversely affect immune and renal systems and have been frequently detected in DW and food, their major exposure sources for humans. Here, an integrated procedure is proposed to quantitatively assess health risk from CECs due to multiple exposure from the consumption of both DW and food, considering the relevant inter-connected environmental compartments. This procedure was applied to BPA and NP to calculate their probabilistic Benchmark Quotient (BQ), showing its potential in quantitatively apportioning the risk between contaminants and exposure sources, and its use as a decision support tool for prioritizing mitigation measures. Our results indicate that, even though the human health risk due to NP is not negligible, the estimated risk due to BPA is significantly higher, and the consumption of food from edible crops determines a higher risk compared to tap water. Hence, BPA is undoubtedly a contaminant to be prioritized, especially through mitigation actions aimed at its prevention and removal from food.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Humans , Wastewater , Crops, Agricultural , Soil , Water Pollutants, Chemical/analysis , Risk Assessment
3.
Environ Int ; 165: 107294, 2022 07.
Article in English | MEDLINE | ID: mdl-35623187

ABSTRACT

The occurrence and hazard risks of mixtures of Contaminants of Emerging Concern (CECs) in drinking water (DW) lead to serious consideration regarding the possible impacts on public health. Consequently, there is ongoing research, development and empowerment of risk assessment procedures to get more toxicological insight. For instance, alkylphenols and phthalates have been frequently reported to be present both in bottled and tap water, affecting different human endpoints. Currently, deterministic chemical risk assessment (CRA) is used to evaluate the compounds' mixture health risk. However, CRA deals just qualitatively with sources of uncertainty, which may lead to erroneous assessment of risks. Here, a new procedure for quantitative chemical risk assessment of CEC mixtures (QCRAMIX) is proposed. Its potential is illustrated by a case study where the risks related to the presence of mixtures of alkylphenols or phthalates in tap versus bottled DW are compared. Uncertainties in both exposure and hazard assessment steps of the procedure are included to calculate a probabilistic mixture Benchmark Quotient (BQMIX). The QCRAMIX procedure highlighted the non-negligible health risks posed by those compounds in both DW sources based on overall water consumption. In fact, DW consumers' behaviour in 13 different countries, in terms of total DW consumption and fraction of bottled and tap water consumed, were considered to evaluate the influence on health risk. For alkylphenols, the total water consumption was found to be the most relevant factor in increasing the health risk, while for phthalates the risk was found to be mainly influenced by the percentage of bottled water consumed. Hence, the proposed QCRAMIX procedure can be a valuable tool for prioritization of CECs to be included in DW regulations which aim to minimize the overall risk, accounting for actual DW consumption.


Subject(s)
Drinking Water , Phthalic Acids , Drinking Water/chemistry , Humans , Phthalic Acids/analysis , Risk Assessment
4.
Water Res ; 194: 116911, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33607390

ABSTRACT

The uncertainties on the occurrence, fate and hazard of Contaminants of Emerging Concern (CECs) increasingly challenge drinking water (DW) utilities whether additional measures should be taken to reduce the health risk. This has led to the development and evaluation of risk-based approaches by the scientific community. DW guideline values are commonly derived based on deterministic chemical risk assessment (CRA). Here, we propose a new probabilistic procedure, that is a quantitative chemical risk assessment (QCRA), to assess potential health risk related to the occurrence of CECs in DW. The QCRA includes uncertainties in risk calculation in both exposure and hazard assessments. To quantify the health risk in terms of the benchmark quotient probabilistic distribution, the QCRA estimates the probabilistic distribution of CECs concentration in DW based on their concentration in source water and simulating the breakthrough curves of a granular activated carbon (GAC) treatment process. The model inputs and output uncertainties were evaluated by sensitivity and uncertainty analyses for each step of the risk assessment to identify the most relevant factors affecting risk estimation. Dominant factors resulted to be the concentration of CECs in water sources, GAC isotherm parameters and toxicological data. To stress the potential of this new QCRA approach, several case studies are considered with focus on bisphenol A as an example CEC and various GAC management options. QCRA quantifies the probabilistic risk, providing more insight compared to CRA. QCRA proved to be more effective in supporting the intervention prioritization for treatment optimization to pursue health risk minimization.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Charcoal , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/analysis , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...