Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Anim Reprod Sci ; 187: 174-180, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29113726

ABSTRACT

Embryonic and placental development is highly orchestrated by epigenetic processes. Disruptions in normal placental development, commonly observed in pregnancies produced by nuclear transfer, are associated with abnormal gene expression and altered epigenetic regulation of imprinted and vital placental genes. The objective of this study was to evaluate expression and epigenetic regulation of the imprinted gene TSSC4 in cotyledonary and intercotyledonary tissues from day 60 pregnancies produced by embryo transfer (ET), in vitro fertilization (IVF) and nuclear transfer (NT) in cattle. TSSC4 expression was reduced by 30% in cotyledons at 60days of gestation in the NT group. The proximal promoter region of TSSC4 showed an increase in the permissive histone mark (H3K4me2) and a reduction in the inhibitory histone mark (H3K9me2) in the cotyledons produced by NT, in relation to cotyledons produced by embryo transfer. Interestingly, H3K9me2 was also significantly reduced in cotyledons produced by IVF, compared to the ET controls. DNA methylation, in CpG-rich regions located at the proximal promoter region and the coding region of TSSC4 did not differ. These results suggest that the reduction in TSSC4 expression, observed following NT, can not be explained by the histone changes investigated in the proximal promoter region of the gene, or by changes in methylation in three regions evaluated. Also, a decrease in the levels of H3K9 dimethylation in IVF samples, indicate that in vitro culturing could corroborate with the alterations seen in the NT group.


Subject(s)
Cattle/genetics , Embryo Transfer/methods , Fertilization in Vitro/methods , Nuclear Transfer Techniques , Placenta/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Genomic Imprinting , Organ Specificity , Pregnancy , Tumor Suppressor Proteins/genetics
2.
Reprod Fertil Dev ; 29(3): 458-467, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28442058

ABSTRACT

Abnormal placental development is frequent in nuclear transfer (NT) pregnancies and is likely to be associated with altered epigenetic reprogramming. In the present study, fetal and placental measurements were taken on Day 60 of gestation in cows with pregnancies produced by AI, IVF and NT. Placentas were collected and subjected to histological evaluation, the expression of genes important in trophoblast differentiation and expression of the placental imprinted gene pleckstrin homology-like domain, family A, member 2 (PHLDA2), as well as chromatin immunoprecipitation (ChIP) for histone marks within the promoter of PHLDA2. Fewer binucleated cells were observed in NT cotyledons, followed by IVF and AI cotyledons (P<0.05). Expression of heart and neural crest derivatives expressed 1 (HAND1), placental lactogen (PL), pregnancy-associated glycoprotein 9 (PAG-9) and PHLDA2 was elevated in NT cotyledons compared with AI cotyledons. Expression of PHLDA2 was higher in IVF than AI samples (P<0.05). ChIP revealed an increase in the permissive mark dimethylation of lysine 4 on histone H3 (H3K4me2), surprisingly associated with the silent allele of PHLDA2, and a decrease in the inhibitory mark H3K9me2 in NT samples. Thus, genes critical for placental development were altered in NT placentas, including an imprinted gene. Allele-specific changes in the permissive histone mark in the PHLDA2 promoter indicate misregulation of imprinting in clones. Abnormal trophoblast differentiation could have resulted in lower numbers of binucleated cells following NT. These results suggest that the altered expression of imprinted genes associated with NT are also caused by changes in histone modifications.


Subject(s)
Gene Expression , Histone Code , Histones/metabolism , Nuclear Proteins/metabolism , Nuclear Transfer Techniques/veterinary , Placenta/metabolism , Alleles , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cattle , Female , Histones/genetics , Nuclear Proteins/genetics , Placental Lactogen/genetics , Placental Lactogen/metabolism , Placentation/physiology , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Trophoblasts/metabolism
3.
Pesqui. vet. bras ; 35(7): 605-612, jul. 2015. tab, graf
Article in English | LILACS | ID: lil-766201

ABSTRACT

In vitro production (IVP) of bovine embryos is not only of great economic importance to the cattle industry, but is also an important model for studying embryo development. The aim of this study was to evaluate the histone modification, H3R26me2 during pre-implantation development of IVP bovine embryos cultured with or without serum supplementation and how these in vitro treatments compared to in vivo embryos at the morula stage. After in vitro maturation and fertilization, bovine embryos were cultured with either 0 or 2.5% fetal bovine serum (FBS). Development was evaluated and embryos were collected and fixed at different stages during development (2-, 4-, 8-, 16-cell, morula and blastocyst). Fixed embryos were then used for immunofluorescence utilizing an antibody for H3R26me2. Images of stained embryos were analyzed as a percentage of total DNA. Embryos cultured with 2.5% FBS developed to blastocysts at a greater rate than 0%FBS groups (34.85±5.43% vs. 23.38±2.93%; P<0.05). Levels of H3R26me2 changed for both groups over development. In the 0%FBS group, the greatest amount of H3R26me2 staining was at the 4-cell (P<0.05), 16-cell (P<0.05) and morula (P<0.05) stages. In the 2.5%FBS group, only 4-cell stage embryos were significantly higher than all other stages (P<0.01). Morula stage in vivo embryos had similar levels as the 0%FBS group, and both were significantly higher than the 2.5%FBS group. These results suggest that the histone modification H3R26me2 is regulated during development of pre-implantation bovine embryos, and that culture conditions greatly alter this regulation...


A produção in vitro (PIV) de embriões de bovinos não é apenas de grande importância econômica para a pecuária, mas é também um importante modelo para estudar o desenvolvimento embrionário. O objetivo deste estudo foi avaliar a modificação de histona, H3R26me2 durante o desenvolvimento pré-implantacional em embriões bovinos produzidos in vitro, cultivados com ou sem suplementação de soro fetal bovino (SFB), bem como comparar essa modificação específica entre mórulas produzidas in vitro e in vivo. Após a maturação in vitro e fertilização, embriões foram cultivados com suplementação de 0 ou 2,5% SFB. O desenvolvimento embrionário foi avaliado e embriões foram coletados e fixados em diferentes fases durante o desenvolvimento (2, 4, 8 e 16 células, mórula e blastocisto). Os embriões fixados foram avaliados por imunofluorescência utilizando um anticorpo para H3R26me2. Imagens de embriões corados foram analisadas baseadas na porcentagem do DNA total. Embriões cultivados com 2,5% SFB tiveram uma taxa de desenvolvimento ao estágio de blastocisto maior que o grupo que não recebeu suplementação com SFB (34.85±5,43% vs 23.38±,93%; P<0,05). Níveis de H3R26me2 variaram para ambos os grupos ao longo do desenvolvimento. No grupo 0% SFB, a marcação para H3R26me2 foi mais intensa nos estágios de 4 células (P<0,05), 16 células (P<0,05) e mórula (P<0.05). No grupo 2.5% SFB, apenas os embriões de 4 células tiveram marcação significativamente maior que todas as outras fases (P<0,01). Mórulas produzidas in vivo apresentaram níveis de H3R26me2 semelhantes ao grupo 0% SFB, e ambos foram significativamente maiores que o grupo 2.5% SFB. Estes resultados sugerem que a modificação de histona H3R26me2 é regulada durante o desenvolvimento pré-implantacional de embriões bovinos, e que as condições de cultura alteram de maneira importante esta regulação...


Subject(s)
Animals , Cattle , Cattle/embryology , Embryonic Development , Histones/analysis , Immunohistochemistry/veterinary , Morula , In Vitro Techniques/veterinary , Embryo Culture Techniques/veterinary
4.
Theriogenology ; 83(9): 1408-15, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25777077

ABSTRACT

In vitro production of bovine embryos is a biotechnology of great economic impact. Epigenetic processes, such as histone remodeling, control gene expression and are essential for proper embryo development. Given the importance of IVP as a reproductive biotechnology, the role of epigenetic processes during embryo development, and the important correlation between culture conditions and epigenetic patterns, the present study was designed as a 2 × 2 factorial to investigate the influence of varying oxygen tensions (O2; 5% and 20%) and concentrations of fetal bovine serum (0% and 2.5%), during IVC, in the epigenetic remodeling of H3K9me2 (repressive) and H3K4me2 (permissive) in bovine embryos. Bovine oocytes were used for IVP of embryos, cleavage and blastocyst rates were evaluated, and expanded blastocysts were used for evaluation of the histone marks H3K9me2 and H3K4me2. Morulae and expanded blastocysts were also used to evaluate the expression of remodeling enzymes, specific to the aforementioned marks, by real-time polymerase chain reaction. Embryos produced in the presence of fetal bovine serum (2.5%) had a 10% higher rate of blastocyst formation. Global staining for the residues H3K9me2 and H3K4me2 was not affected significantly by the presence of serum. Notwithstanding, the main effect of oxygen tension was significant for both histone marks, with both repressive and permissive marks being higher in embryos cultured at the higher oxygen tension; however, expression of the remodeling enzymes did not differ in morulae or blastocysts in response to the varying oxygen tension. These results suggest that the use of serum during IVC of embryos increases blastocyst rate without affecting the evaluated histone marks and that oxygen tension has an important effect on the histone marks H3K9me2 and H3K4me2 in bovine blastocysts.


Subject(s)
Embryo Culture Techniques/veterinary , Embryonic Development/genetics , Histones/metabolism , Oxygen/pharmacology , Animals , Blastocyst/drug effects , Blastocyst/physiology , Cattle , Epigenesis, Genetic , Female , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...