Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(16)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34451187

ABSTRACT

3D printing is an emerging and disruptive technology, supporting the field of medicine over the past decades. In the recent years, the use of additive manufacturing (AM) has had a strong impact on everyday dental applications. Despite remarkable previous results from interdisciplinary research teams, there is no evidence or recommendation about the proper fabrication of handheld medical devices using desktop 3D printers. The aim of this study was to critically examine and compare the mechanical behavior of materials printed with FFF (fused filament fabrication) and CFR (continuous fiber reinforcement) additive manufacturing technologies, and to create and evaluate a massive and practically usable right upper molar forceps. Flexural and torsion fatigue tests, as well as Shore D measurements, were performed. The tensile strength was also measured in the case of the composite material. The flexural tests revealed the measured force values to have a linear correlation with the bending between the 10 mm (17.06 N at 5000th cycle) and 30 mm (37.99 N at 5000th cycle) deflection range. The findings were supported by scanning electron microscopy (SEM) images. Based on the results of the mechanical and structural tests, a dental forceps was designed, 3D printed using CFR technology, and validated by five dentists using a Likert scale. In addition, the vertical force of extraction was measured using a unique molar tooth model, where the reference test was carried out using a standard metal right upper molar forceps. Surprisingly, the tests revealed there to be no significant differences between the standard (84.80 N ± 16.96 N) and 3D-printed devices (70.30 N ± 4.41 N) in terms of extraction force in the tested range. The results also highlighted that desktop CFR technology is potentially suitable for the production of handheld medical devices that have to withstand high forces and perform load-bearing functions.

2.
Materials (Basel) ; 14(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809866

ABSTRACT

Additive manufacturing technologies based on metal melting use materials mainly in powder or wire form. This study focuses on developing a metal 3D printing process based on cold metal transfer (CMT) welding technology, in order to achieve enhanced productivity. Aluminium alloy test specimens have been fabricated using a special 3D printing technology. The probes were investigated to find correlation between the welding parameters and geometric quality. Geometric measurements and tensile strength experiments were performed to determine the appropriate welding parameters for reliable printing. The tensile strength of the product does not differ significantly from the raw material. Above 60 mm height, the wall thickness is relatively constant due to the thermal balance of the welding environment. The results suggest that there might be a connection between the welding parameters and the printing accuracy. It is demonstrated that the deviation of ideal geometry will be the smallest at the maximum reliable welding torch movement speed, while printing larger specimens. As a conclusion, it can be stated that CMT-based additive manufacturing can be a reliable, cost-effective and rapid 3D printing technology with enhanced productivity, but without significant decrease in mechanical stability.

3.
Polymers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322322

ABSTRACT

Currently, 3D printing is an affordable technology for industry, healthcare, and individuals. Understanding the mechanical properties and thermoplastic behaviour of the composites is critical for the users. Our results give guidance for certain target groups including professionals in the field of additive manufacturing for biomedical components with in-depth characterisation of the examined commercially available ABS and PLA carbon-based composites. The study aimed to characterize these materials in terms of thermal behaviour and structure. The result of the heating-cooling loops is the thermal hysteresis effect of Ohmic resistance with its accommodation property in the temperature range of 20-84 °C for ESD-ABS and 20-72 °C for ESD-PLA. DSC-TGA measurements showed that the carbon content of the examined ESD samples is ~10-20% (m/m) and there is no significant difference in the thermodynamic behaviour of the basic ABS/PLA samples and their ESD compounds within the temperature range typically used for 3D printing. The results support the detailed design process of 3D-printed electrical components and prove that ABS and PLA carbon composites are suitable for prototyping and the production of biomedical sensors.

4.
Polymers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207712

ABSTRACT

Different additive manufacturing technologies have proven effective and useful in remote medicine and emergency or disaster situations. The coronavirus disease 2019 (COVID-19) disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, has had a huge impact on our society, including in relation to the continuous supply of personal protective equipment (PPE). The aim of the study is to give a detailed overview of 3D-printed PPE devices and provide practical information regarding the manufacturing and further design process, as well as describing the potential risks of using them. Open-source models of a half-face mask, safety goggles, and a face-protecting shield are evaluated, considering production time, material usage, and cost. Estimations have been performed with fused filament fabrication (FFF) and selective laser sintering (SLS) technology, highlighting the material characteristics of polylactic acid (PLA), polyamide, and a two-compound silicone. Spectrophotometry measurements of transparent PMMA samples were performed to determine their functionality as goggles or face mask parts. All the tests were carried out before and after the tetra-acetyl-ethylene-diamine (TAED)-based disinfection process. The results show that the disinfection has no significant effect on the mechanical and structural stability of the used polymers; therefore, 3D-printed PPE is reusable. For each device, recommendations and possible means of development are explained. The files of the modified models are provided. SLS and FFF additive manufacturing technology can be useful tools in PPE development and small-series production, but open-source models must be used with special care.

5.
Biol Conserv ; 209: 253-262, 2017 May.
Article in English | MEDLINE | ID: mdl-28529346

ABSTRACT

Considering the ongoing loss of aquatic habitats, anthropogenic ponds are gaining importance as substitute habitats. It is therefore important to assess their functioning in comparison to their natural precursors. Here we assess the biodiversity value of sodic bomb crater ponds by comparing their gamma diversity to that of natural reference habitats, astatic soda pans, and assess their importance on the landscape level by studying alpha and beta diversity. We studied aquatic organisms ranging from algae to vertebrates in a dense cluster of 54 sodic bomb crater ponds in Central Europe. Despite the overall small area of the pond cluster, gamma diversity was comparable to that found in surveys of natural habitats that encompassed much wider spatial and temporal scales. We also found a considerable number of species shared with reference habitats, indicating that these anthropogenic habitats function as important refuge sites for several species that are associated with the endangered soda pans. Moreover, we found a number of regionally or worldwide rare species. Among the components of beta diversity, species replacement dominated community assembly. Individual ponds contributed similarly to beta diversity in terms of replacement, being equally important for maintaining high gamma diversity and emphasising the role of the pond network rather than individual ponds. This pattern was seen in all studied groups. Bomb crater ponds therefore acted as important contributors to aquatic biodiversity. Considering the tremendous losses of ponds throughout Europe, anthropogenic ponds should be taken into consideration in nature conservation, especially when occurring in pond networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...