Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299795

ABSTRACT

This work presents a multi-parameter optical fiber monitoring solution applied to an underground power distribution network. The monitoring system demonstrated herein uses Fiber Bragg Grating (FBG) sensors to measure multiple parameters, such as the distributed temperature of the power cable, external temperature and current of the transformers, liquid level, and intrusion in the underground manholes. To monitor partial discharges of cable connections, we used sensors that detect radio frequency signals. The system was characterized in the laboratory and tested in underground distribution networks. We present here the technical details of the laboratory characterization, system installation, and the results of 6 months of network monitoring. The data obtained for temperature sensors in the field tests show a thermal behavior depending on the day/night cycle and the season. The temperature levels measured on the conductors indicated that in high-temperature periods, the maximum current specified for the conductor must be reduced, according to the applied Brazilian standards. The other sensors detected other important events in the distribution network. All the sensors demonstrated their functionality and robustness in the distribution network, and the monitored data will allow the electric power system to have a safe operation, with optimized capacity and operating within tolerated electrical and thermal limits.


Subject(s)
Body Fluids , Humans , Brazil , Electric Power Supplies , Electricity , Fever
2.
Sensors (Basel) ; 20(20)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076267

ABSTRACT

We demonstrated in this work a filterless, multi-point and temperature-independent FBG (fiber Bragg grating) dynamical demodulator using pulse-width-modulation (PWM). In this approach, the FBG interrogation system is composed of a tunable laser and a demodulator that is designed to detect the wavelength shift of the FBG sensor without any optical filter making it very suitable to be used in harsh environments. In this work, we applied the proposed method that uses the PWM technique for FBG sensors placed in high pressure and high-temperature environments. The proposed method was characterized in the laboratory using an FBG sensor modulated in a frequency of 6 Hz, with a 1 kHz sweeping frequency in the wavelength range from 1527 to 1534 nm. Also, the method was evaluated in a field test in an engine of a thermoelectric power plant.

SELECTION OF CITATIONS
SEARCH DETAIL
...