Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 119(11): 3149-3161, 2022 11.
Article in English | MEDLINE | ID: mdl-35959746

ABSTRACT

Microorganisms build fatty acids with biocatalytic assembly lines, or fatty acid synthases (FASs), that can be repurposed to produce a broad set of fuels and chemicals. Despite their versatility, the product profiles of FAS-based pathways are challenging to adjust without experimental iteration, and off-target products are common. This study uses a detailed kinetic model of the Escherichia coli FAS as a foundation to model nine oleochemical pathways. These models provide good fits to experimental data and help explain unexpected results from in vivo studies. An analysis of pathways for alkanes and fatty acid ethyl esters (FAEEs), for example, suggests that reductions in titer caused by enzyme overexpression-an experimentally consistent phenomenon-can result from shifts in metabolite pools that are incompatible with the substrate specificities of downstream enzymes, and a focused examination of multiple alcohol pathways indicates that coordinated shifts in enzyme concentrations provide a general means of tuning the product profiles of pathways with promiscuous components. The study concludes by integrating all models into a graphical user interface. The models supplied by this work provide a versatile kinetic framework for studying oleochemical pathways in different biochemical contexts.


Subject(s)
Escherichia coli , Metabolic Engineering , Alkanes/metabolism , Escherichia coli/metabolism , Fatty Acid Synthases/metabolism , Fatty Acids/metabolism , Metabolic Engineering/methods
2.
Metab Eng ; 69: 209-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34826644

ABSTRACT

Cellular metabolism is a nonlinear reaction network in which dynamic shifts in enzyme concentration help regulate the flux of carbon to different products. Despite the apparent simplicity of these biochemical adjustments, their influence on metabolite biosynthesis tends to be context-dependent, difficult to predict, and challenging to exploit in metabolic engineering. This study combines a detailed kinetic model with a systematic set of in vitro and in vivo analyses to explore the use of enzyme concentration as a control parameter in fatty acid synthesis, an essential metabolic process with important applications in oleochemical production. Compositional analyses of a modeled and experimentally reconstituted fatty acid synthase (FAS) from Escherichia coli indicate that the concentration ratio of two native enzymes-a promiscuous thioesterase and a ketoacyl synthase-can tune the average length of fatty acids, an important design objective of engineered pathways. The influence of this ratio is sensitive to the concentrations of other FAS components, which can narrow or expand the range of accessible chain lengths. Inside the cell, simple changes in enzyme concentration can enhance product-specific titers by as much as 125-fold and elicit shifts in overall product profiles that rival those of thioesterase mutants. This work develops a kinetically guided approach for using ratiometric adjustments in enzyme concentration to control the product profiles of FAS systems and, broadly, provides a detailed framework for understanding how coordinated shifts in enzyme concentration can afford tight control over the outputs of nonlinear metabolic pathways.


Subject(s)
Escherichia coli Proteins , Metabolic Engineering , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fatty Acids/genetics , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...