Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 20(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823847

ABSTRACT

This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m-2 sr-1 nm-1]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD < 3.78 [mW m-2 sr-1 nm-1]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.

2.
Sensors (Basel) ; 17(5)2017 May 13.
Article in English | MEDLINE | ID: mdl-28505070

ABSTRACT

Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals' recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%.

SELECTION OF CITATIONS
SEARCH DETAIL