Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(4): e0075323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37432034

ABSTRACT

Changes to gut environmental factors such as pH and osmolality due to disease or drugs correlate with major shifts in microbiome composition; however, we currently cannot predict which species can tolerate such changes or how the community will be affected. Here, we assessed the growth of 92 representative human gut bacterial strains spanning 28 families across multiple pH values and osmolalities in vitro. The ability to grow in extreme pH or osmolality conditions correlated with the availability of known stress response genes in many cases, but not all, indicating that novel pathways may participate in protecting against acid or osmotic stresses. Machine learning analysis uncovered genes or subsystems that are predictive of differential tolerance in either acid or osmotic stress. For osmotic stress, we corroborated the increased abundance of these genes in vivo during osmotic perturbation. The growth of specific taxa in limiting conditions in isolation in vitro correlated with survival in complex communities in vitro and in an in vivo mouse model of diet-induced intestinal acidification. Our data show that in vitro stress tolerance results are generalizable and that physical parameters may supersede interspecies interactions in determining the relative abundance of community members. This study provides insight into the ability of the microbiota to respond to common perturbations that may be encountered in the gut and provides a list of genes that correlate with increased ability to survive in these conditions. IMPORTANCE To achieve greater predictability in microbiota studies, it is crucial to consider physical environmental factors such as pH and particle concentration, as they play a pivotal role in influencing bacterial function and survival. For example, pH is significantly altered in various diseases, including cancers, inflammatory bowel disease, as well in the case of over-the-counter drug use. Additionally, conditions like malabsorption can affect particle concentration. In our study, we investigate how changes in environmental pH and osmolality can serve as predictive indicators of bacterial growth and abundance. Our research provides a comprehensive resource for anticipating shifts in microbial composition and gene abundance during complex perturbations. Moreover, our findings underscore the significance of the physical environment as a major driver of bacterial composition. Finally, this work emphasizes the necessity of incorporating physical measurements into animal and clinical studies to better understand the factors influencing shifts in microbiota abundance.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Animals , Mice , Bacteria , Osmolar Concentration , Hydrogen-Ion Concentration
2.
Microbiome ; 11(1): 21, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737826

ABSTRACT

BACKGROUND: Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 µg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS: Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS: Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.


Subject(s)
Citrobacter rodentium , Vitamin B 12 , Humans , Animals , Mice , Vitamin B 12/pharmacology , Host Microbial Interactions , Colon , Dietary Supplements
3.
Appl Environ Microbiol ; 89(3): e0162822, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36809030

ABSTRACT

Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Escherichia coli/physiology , Diet, High-Fat/adverse effects , Obesity/microbiology , Bacteria , Inflammation , Enterobacteriaceae , Disease Models, Animal , Glucose/metabolism , Mice, Inbred C57BL
4.
Microbes Infect ; 23(6-7): 104815, 2021.
Article in English | MEDLINE | ID: mdl-33775859

ABSTRACT

The human gut hosts a dense and diverse microbial community, spatially organized in multiple scales of structure. Here, we review how microbial organization differs between health and disease. We describe how changes in spatial organization may induce alterations in gut homeostasis, concluding with a future outlook to reveal causality.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Gastrointestinal Tract/immunology , Health , Humans
5.
J Nutr Biochem ; 67: 101-110, 2019 05.
Article in English | MEDLINE | ID: mdl-30877891

ABSTRACT

Health benefits associated with pea consumption have been attributed to the fiber and polyphenolic content concentrated within the pea seed coat. However, the amount of pea polyphenols can vary between cultivars, and it has yet to be studied whether pea polyphenols impact the intestinal microbiota. We hypothesized that pea polyphenols promote a healthy microbiome that supports intestinal integrity and pathogen colonization resistance. To investigate the effects of pea polyphenols, pea cultivars rich and poor in proanthocyanidins were supplemented in raw or acid hydrolyzed form to an isocaloric diet in mice. Acid hydrolysis increases the absorption of pea polyphenols by cleaving polymeric proanthocyanidins to their readily absorbable anthocyanidin monomers. After 3 weeks of diet, mice were challenged with Citrobacter rodentium and pathogen colonization and inflammation were assessed. Counter to our hypothesis, pea seed coat fraction supplementation, especially the non-hydrolyzed proanthocyanidin-rich fraction diet adversely increased C. rodentium pathogen load and inflammation. Ileal, cecal and colon microbial communities were notably distinct between pea seed cultivar and hydrolysis processing. The consumption of intact proanthocyanidins decreased microbial diversity indicating that proanthocyanidins have antimicrobial properties. Together our results indicate supplementation of raw pea seed coat rich in proanthocyanidins adversely affect intestinal integrity. However, acid hydrolysis processing restored community structure and colonization resistance, and the anthocyanidin-rich fractions reduced weight gain on a high fat diet. Establishing a clear understanding of the effects of pea fiber and polyphenolic form on health will help to develop research-based pea products and dietary recommendations.


Subject(s)
Enterobacteriaceae Infections/microbiology , Gastrointestinal Microbiome/drug effects , Pisum sativum/chemistry , Polyphenols/pharmacology , Animals , Anthocyanins/pharmacology , Bacterial Load , Citrobacter rodentium/pathogenicity , Diet, High-Fat/adverse effects , Dietary Supplements , Fatty Acids, Volatile/metabolism , Feces/microbiology , Female , Food-Processing Industry/methods , Gastrointestinal Microbiome/physiology , Hydrolysis , Mice, Inbred C57BL , Seeds/chemistry , Weight Gain/drug effects
7.
Int J Antimicrob Agents ; 49(6): 719-726, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28390963

ABSTRACT

A topical antimicrobial, silver oxynitrate (Ag7NO11), has recently become available that exploits the antimicrobial activity of ionic silver but has enhanced activity because highly oxidised silver atoms are stabilised with oxygen in a unique chemical formulation. The objective of this study was to use a multifaceted approach to characterise the spectrum of antimicrobial and antibiofilm activity of a wound dressing coated with Ag7NO11 at a concentration of 0.4 mg Ag/cm2. Physiochemical properties that influence efficacy were also evaluated, and Ag7NO11 was found to release a high level of Ag ions, including Ag2+ and Ag3+, without influencing the pH of the medium. Time-kill analysis demonstrated that a panel of multidrug-resistant pathogens isolated from wound specimens remained susceptible to Ag7NO11 over a period of 7 days, even with repeated inoculations of 1 × 106 CFU/mL to the dressing. Furthermore, established 72-h-old biofilms of Pseudomonas aeruginosa, Staphylococcus aureus and two carbapenem-resistant Gram-negative bacteria (blaNDM-1-positive Klebsiella pneumoniae and blaVIM-2-positive P. aeruginosa) were disrupted and eradicated by Ag7NO11 in vitro. Ag7NO11 is a proprietary compound that exploits novel Ag chemistry and can be considered a new class of topical antimicrobial agent. Biocompatibility testing has concluded Ag7NO11 to be non-toxic for cytotoxicity, acute systemic toxicity, irritation and sensitisation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects , Silver Compounds/pharmacology , Staphylococcus aureus/drug effects , Klebsiella pneumoniae/physiology , Microbial Sensitivity Tests , Microbial Viability/drug effects , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...