Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 19(22): 8258-8272, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37882796

ABSTRACT

We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.


Subject(s)
DNA , Electrons , Photochemistry
2.
Environ Sci Pollut Res Int ; 25(13): 13004-13013, 2018 May.
Article in English | MEDLINE | ID: mdl-29480393

ABSTRACT

Long-range atmospheric transport is one of the most important ways in which persistent organic pollutants can be transported from their source to remote and pristine regions. Here, we report the results of the first Argentinian measurements of organochlorine pesticides in the Antarctic region. During a 9665-km track onboard OV ARA Puerto Deseado, within the framework of Argentinian Antarctic Expeditions, air samples were taken using high-volume samplers and analyzed using GC-µECD. HCB, HCHs, and endosulfans were the major organic pollutants found, and a north-south gradient in their concentrations was evident by comparing data from the Argentinian offshore zone to the South Scotia Sea.


Subject(s)
Air Movements , Air Pollutants/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Antarctic Regions , Argentina , Oceans and Seas
3.
Phys Chem Chem Phys ; 20(10): 6877-6890, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29459916

ABSTRACT

The most relevant 'dark' electronic excited states in DNA/RNA pyrimidine nucleosides are mapped in water employing hybrid MS-CASPT2/MM optimisations with explicit solvation and including the sugar. Conical intersections (CIs) between initially accessed bright 1ππ* and the lowest energy dark 1nπ* excited states, involving the lone pair localised on the oxygen and/or nitrogen atoms are characterised. They are found in the vicinities of the Franck-Condon (FC) region and are shown to facilitate non-adiabatic population transfer. The excited state population of the 1nOπ* state, localised in the carbonyl moiety on all pyrimidine nucleosides, is predicted to rapidly evolve to its minimum, displaying non-negligible potential energy barriers along its non-radiative decay, and accounting for the ps signal registered in pump-probe experiments as well as for an efficient population of the triplet state. Cytidine displays an additional 1nNπ* state localised in the N3 atom and that leads to its excited state minimum displaying large potential energy barriers in the pathway connecting to the CI with the ground state. Sugar-to-base hydrogen/proton transfer processes are assessed in solution for the first time, displaying a sizable barrier along its decay and thus being competitive with other slow decay channels in the ps and ns timescales. A unified deactivation scheme for the long-lived channels of pyrimidine nucleosides is delivered, where the 1nOπ* state is found to mediate the long-lived decay in the singlet manifold and act as the doorway for triplet population and thus accounting for the recorded phosphorescence and, more generally, for the transient/photoelectron spectral signals registered up to the ns timescale.


Subject(s)
Molecular Dynamics Simulation , Pyrimidine Nucleosides/chemistry , DNA/chemistry , Molecular Conformation , Nitrogen/chemistry , Oxygen/chemistry , RNA/chemistry , Solvents , Structure-Activity Relationship , Ultraviolet Rays , Water/chemistry
4.
Faraday Discuss ; 207(0): 233-250, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29359207

ABSTRACT

A computational strategy to simulate two-dimensional electronic spectra (2DES) is introduced, which allows us to analyse ground state dynamics and to sample and measure different conformations attained by flexible molecular systems in solution. An explicit mixed quantum mechanics/molecular mechanics (QM/MM) approach is employed for the evaluation of the necessary electronic excited state energies and transition dipole moments. The method is applied towards a study of the highly flexible water-solvated adenine-adenine monophosphate (ApA), a system featuring two interacting adenine moieties that display various intermolecular arrangements, known to deeply affect their photochemical outcome. Molecular dynamics simulations and cluster analysis have been used to select the molecular conformations, reducing the complexity of the flexible ApA conformational space. By using our sum-over-states (SOS) approach to obtain the 2DES spectra for each of these selected conformations, we can discern spectral changes and relate them to specific nuclear arrangements: close lying π-stacked bases exhibit a splitting of their respective 1La signal traces; T-stacked bases exhibit the appearance of charge transfer states in the low-energy Vis probing window while displaying no 1La splitting, being particularly favoured when promoting amino to 5-ring interactions; unstacked and distant adenine moieties exhibit signals similar to those of the adenine monomer, as is expected for non-interacting nucleobases. 2DES maps reveal the spectral fingerprints associated with specific molecular conformations, and are thus a promising option to enable their quantitative spectroscopic detection beyond standard 1D pump-probe techniques. This is expected to aid the understanding of how nucleobase aggregation controls and modulates the photostability and photo-damage of extended DNA/RNA systems.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , RNA/chemistry , Quantum Theory , Spectrum Analysis
5.
J Phys Chem Lett ; 8(8): 1777-1783, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28346789

ABSTRACT

For the first time, ultrafast deactivations of photoexcited water-solvated pyrimidine nucleosides are mapped employing hybrid QM(CASPT2)/MM(AMBER) optimizations that account for explicit solvation, sugar effects, and dynamically correlated potential energy surfaces. Low-energy S1/S0 ring-puckering and ring-opening conical intersections (CIs) are suggested to drive the ballistic coherent subpicosecond (<200 fs) decays observed in each pyrimidine, the energetics controlling this processes correlating with the lifetimes observed. A second bright 1π2π* state, promoting excited-state population branching and leading toward a third CI with the ground state, is proposed to be involved in the slower ultrafast decay component observed in Thd/Cyd. The transient spectroscopic signals of the competitive deactivation channels are computed for the first time. A general unified scheme for ultrafast deactivations, spanning the sub- to few-picosecond time domain, is eventually delivered, with computed data that matches the experiments and elucidates the intrinsic photoprotection mechanism in solvated pyrimidine nucleosides.

SELECTION OF CITATIONS
SEARCH DETAIL
...