Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 54(3): 971-982, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27567855

ABSTRACT

Aggregation of the amyloid-beta (Aß) peptide into insoluble plaques is a major factor in Alzheimer's disease (AD) pathology. Another major factor in AD is arguably metal ions, as metal dyshomeostasis is observed in AD patients, metal ions modulate Aß aggregation, and AD plaques contain numerous metals including redox-active Cu and Fe ions. In vivo, Aß is found in various cellular locations including membranes. So far, Cu(II)/Aß interactions and ROS generation have not been investigated in a membrane environment. Here, we study Cu(II) and Zn(II) interactions with Aß bound to SDS micelles or to engineered aggregation-inhibiting molecules (the cyclic peptide CP-2 and the ZAß3(12-58)Y18L Affibody molecule). In all studied systems the Aß N-terminal segment was found to be unbound, unstructured, and free to bind metal ions. In SDS micelles, Aß was found to bind Cu(II) and Zn(II) with the same ligands and the same KD as in aqueous solution. ROS was generated in all Cu(II)/Aß complexes. These results indicate that binding of Aß to membranes, drugs, and other entities that do not interact with the Aß N-terminal part, appears not to compromise the N-terminal segment's ability to bind metal ions, nor impede the capacity of N-terminally bound Cu(II) to generate ROS.


Subject(s)
Amyloid beta-Peptides/metabolism , Copper/metabolism , Micelles , Peptide Fragments/metabolism , Protein Aggregates/physiology , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/analysis , Binding Sites/physiology , Copper/analysis , Humans , Hydrogen Peroxide/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Peptide Fragments/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...