Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20698, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450745

ABSTRACT

Non-absorbable polypropylene (PP) meshes have been widely used in surgical reconstruction of the pelvic floor disorders. However, they are associated with serious complications. Human acellular dermal matrices (hADM) have demonstrated safety and efficacy in reconstructive medicine, but their suitability and efficacy at vaginal level is not known. This study compares the biological performance of PP mesh and a newly developed hADM. 20 rabbits were randomized to receive the hADM graft or the PP mesh. Grafts were surgically implanted in the abdominal wall and vagina. After 180 days, grafts were explanted and evaluated. The vaginal mesh extrusion rate was higher in the PP group (33% vs. 0%, p = 0.015). Full integration of the vaginal grafts was more frequent in the hADM group, where 35% of the grafts were difficult to recognize. In the PP group, the vaginal mesh was identified in 100% of the animals (p = 0.014). In PP group, the infiltrates had a focal distribution and were mostly located in the internal part of the epithelium, while in the hADM group, the infiltrates had a diffuse distribution. Additionally, the hADM group also presented more B-lymphocytes and less T-lymphocytes. Biomechanical analysis showed that hADM had lower resistance to stress. Moreover, PP mesh stiffness and elasticity were higher. Then, hADM is associated with fewer clinical complications, as well as better tissue integration. However, it shows greater incorporation into the surrounding native tissue, especially in the vaginal location, undergoing a reduction in its biomechanical properties 6 months after implantation.


Subject(s)
Acellular Dermis , Lagomorpha , Plastic Surgery Procedures , Animals , Female , Rabbits , Humans , Polypropylenes , Pelvic Floor/surgery , Surgical Mesh/adverse effects
2.
Sci Rep ; 11(1): 10545, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006889

ABSTRACT

The aims of this study were to evaluate the feasibility of the New Zealand White (NZW) rabbit for studying implanted biomaterials in pelvic reconstructive surgery; and to compare the occurrence of graft-related complications of a commercial polypropylene (PP) mesh and new developed human dermal matrix implanted at vaginal and abdominal level. 20 white female NZW rabbits were randomized into two groups, experimental group (human acellular dermal matrices-hADM-graft) and control group (commercial PP graft). In each animal, grafts were surgically implanted subcutaneously in the abdominal wall and in the vaginal submucosa layer for 180 days. The graft segments were then removed and the surgical and clinical results were analyzed. The main surgical challenges during graft implantation were: (a) an adequate vaginal exposure while maintaining the integrity of the vaginal mucosa layer; (b) to keep aseptic conditions; (c) to locate and dissect the breast vein abdominal surgery; and (d) to withdraw blood samples from the ear artery. The most abnormal findings during the explant surgery were found in the PP group (33% of vaginal mesh extrusion) in comparison with the hADM group (0% of vaginal graft extrusion), p = 0.015. Interestingly, macroscopic observation showed that the integration of the vaginal grafts was more common in the hADM group (40%) than in the PP group, in which the vaginal mesh was identified in 100% of the animals (p = 0.014). The NZW rabbit is a good model for assessing materials to be used as grafts for pelvic reconstructive surgery and vaginal surgery. Animals are easily managed during the procedures, including surgical intervention and vaginal mucosa approach. Additionally, hADM is associated with fewer clinical complications, as well as better macroscopic tissue integration, compared to PP mesh.


Subject(s)
Pelvic Floor/physiopathology , Pelvic Floor/surgery , Animals , Biocompatible Materials , Disease Models, Animal , Female , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...