Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Form Res ; 8: e55918, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833696

ABSTRACT

BACKGROUND: Patients with hematological malignancies receiving hematopoietic cell transplantation (HCT) or chimeric antigen receptor (CAR) T-cell therapy are at risk of developing serious clinical complications after discharge. OBJECTIVE: The aim of the TEL-HEMATO study was to improve our telehealth platform for the follow-up of patients undergoing HCT or CAR T-cell therapy during the first 3 months after discharge with the addition of wearable devices. METHODS: Eleven patients who received autologous (n=2) or allogeneic (n=5) HCT or CAR T-cell therapy (n=4) for hematological malignancies were screened from November 2022 to July 2023. Two patients discontinued the study after enrollment. The telehealth platform consisted of the daily collection of vital signs, physical symptoms, and quality of life assessment up to 3 months after hospital discharge. Each patient received a clinically validated smartwatch (ScanWatch) and a digital thermometer, and a dedicated smartphone app was used to collect these data. Daily revision of the data was performed through a web-based platform by a hematologist or a nurse specialized in HCT and CAR T-cell therapy. RESULTS: Vital signs measured through ScanWatch were successfully collected with medium/high adherence: heart rate was recorded in 8/9 (89%) patients, oxygen saturation and daily steps were recorded in 9/9 (100%) patients, and sleeping hours were recorded in 7/9 (78%) patients. However, temperature recorded manually by the patients was associated with lower compliance, which was recorded in 5/9 (55%) patients. Overall, 5/9 (55%) patients reported clinical symptoms in the app. Quality of life assessment was completed by 8/9 (89%) patients at study enrollment, which decreased to 3/9 (33%) at the end of the third month. Usability was considered acceptable through ratings provided on the System Usability Scale. However, technological issues were reported by the patients. CONCLUSIONS: While the addition of wearable devices to a telehealth clinical platform could have potentially synergic benefits for HCT and CAR T-cell therapy patient monitoring, noncomplete automation of the platform and the absence of a dedicated telemedicine team still represent major limitations to be overcome. This is especially true in our real-life setting where the target population generally comprises patients of older age with a low digital education level.

2.
Eur J Neurol ; 28(4): 1324-1333, 2021 04.
Article in English | MEDLINE | ID: mdl-33296534

ABSTRACT

BACKGROUND AND PURPOSE: Cancer treatments have deleterious effects on both brain structure and the cognition of lung cancer patients. Physical activity (PA) has beneficial effects on the cognition of healthy adults by eliciting brain plasticity, especially on the medial temporal lobe (hippocampus). Therefore, the aim was to study the neuroprotective effects of a 3-month PA programme (PAP) on the brain structure and cognitive performance of lung cancer patients. METHODS: Twelve patients (seven non-small-cell lung cancer [NSCLC] patients following chemotherapy, five small-cell lung cancer [SCLC] patients following chemotherapy and prophylactic cranial irradiation) agreed to complete the PAP and underwent baseline and 3-month (post-PAP) brain magnetic resonance imaging and neuropsychological evaluations (PAP group). Twelve lung cancer patients (seven NSCLC, five SCLC; non-PAP group) and 12 healthy sex-, age- and education-matched controls were recruited and completed two evaluations separated by the same amount of time. A region of interest voxel-based morphometry analysis focused on bilateral hippocampi was performed. RESULTS: Physical activity programme patients presented greater grey matter volume (GMV) across time in both hippocampi. Moreover, it was observed that SCLC patients in both the PAP and non-PAP groups presented a time-dependent GMV loss in bilateral hippocampi that was not significant in NSCLC patients. Importantly, the PA intervention decreased the magnitude of that GMV loss, becoming thus especially beneficial at the brain structural level for SCLC patients. CONCLUSIONS: Our study demonstrates, using a neuroimaging approach for the first time, that PA is able to stop the deleterious effects of systemic chemotherapy and brain radiation on brain structures of the lung cancer population, especially in SCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adult , Brain , Carcinoma, Non-Small-Cell Lung/therapy , Exercise , Gray Matter , Hippocampus , Humans , Lung Neoplasms/therapy , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...