Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Environ Pollut ; 351: 124047, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38688386

ABSTRACT

The application of numeric modelling for determining the impact of landfills needs for reliable emission source data. In this study, a methodology for the characterization of the emission profiles of the different sources present in landfills for emission factors determination, applying an indirect methodology, is presented. Ambient air concentrations of volatile organic compounds (VOCs), hydrogen sulphide (H2S) and ammonia (NH3) were determined in three potentially emission sources in Can Mata landfill (Hostalets de Pierola, Catalonia, Spain): dumping areas, pre-closed zone and leachate reservoir as well as in biogas, for the determination of emission factors. Multi-sorbent bed and Tenax TA tubes were used for a wide range of VOCs sampling, and analysis was conducted through TD-GC/MS. H2S and NH3 were sampled and analysed using Radiello passive samplers. The highest total VOC (TVOC) concentrations were found in dumping areas (0.7-3.5 mg m-3), followed by leachate reservoir (0.3-0.6 mg m-3) and pre-closed area (77-165 µg m-3). On the other hand, the highest H2S and NH3 concentrations were found in leachate reservoir, presenting values of 0.8-1.1 mg m-3 and 1.7-1.8 mg m-3, respectively. With the application of odour thresholds to the concentrations obtained, the most critical compounds regarding odour annoyances were determined. The highest odour units (O.U.) were found in leachate reservoir due to H2S concentrations, whereas VOCs contributed mainly to O.U. in the dumping areas. The obtained ambient air concentrations were used for the indirect determination of the emission factors through numerical modelling using a Eulerian dispersion model. The emission factors obtained for the landfill for TVOC, H2S and NH3 were in the range of 0.44-10.9 g s-1, 0.16-1.02 g s-1 and 0.23-1.82 g s-1, respectively, depending on the emission source. Reliable emission factors are crucial to obtain landfill impact maps, which are essential for the correct management of these facilities.


Subject(s)
Air Pollutants , Ammonia , Environmental Monitoring , Hydrogen Sulfide , Volatile Organic Compounds , Waste Disposal Facilities , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring/methods , Ammonia/analysis , Hydrogen Sulfide/analysis , Spain , Air Pollution/statistics & numerical data , Models, Theoretical
2.
Materials (Basel) ; 13(3)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033379

ABSTRACT

The effect of α-Al2O3 nanoparticles (up to 5 wt.%) on the physical, mechanical, and thermal properties, as well as on the microstructural evolution of a dense magnesia refractory is studied. Sintering temperatures at 1300, 1500, and 1600 °C are used. The physical properties of interest were bulk density and apparent porosity, which were evaluated by the Archimedes method. Thermal properties were examined by differential scanning calorimetry. The mechanical behavior was studied by cold crushing strength and microhardness tests. Finally, the microstructure and mineralogical qualitative characteristics were studied by scanning electron microscopy and X-ray diffraction, respectively. Increasing the sintering temperature resulted in improved density and reduced apparent porosity. However, as the α-Al2O3 nanoparticle content increased, the density and microhardness decreased. Microstructural observations showed that the presence of α-Al2O3 nanoparticles in the magnesia matrix induced the magnesium-aluminate spinel formation (MgAl2O4), which improved the mechanical resistance most significantly at 1500 °C.

3.
Sci Total Environ ; 470-471: 587-99, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24176707

ABSTRACT

Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones from urban areas. Environmental conditions (atmospheric pressure, temperature and relative humidity) did not alter the pollutant emission fluxes.


Subject(s)
Air Pollutants/analysis , Industrial Waste/analysis , Refuse Disposal , Volatile Organic Compounds/analysis , Environmental Monitoring
4.
Waste Manag ; 32(12): 2469-81, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22883687

ABSTRACT

Municipal solid waste treatment facilities are generally faced with odorous nuisance problems. Characterizing and determining the odorous charge of indoor air through odour units (OU) is an advantageous approach to evaluate indoor air quality and discomfort. The assessment of the OU can be done through the determination of volatile organic compounds (VOCs) concentrations and the knowledge of their odour thresholds. The evaluation of the presented methodology was done in a mechanical-biological waste treatment plant with a processing capacity of 245.000 tons year(-1) of municipal residues. The sampling was carried out in five indoor selected locations of the plant (Platform of Rotating Biostabilizers, Shipping warehouse, Composting tunnels, Digest centrifugals, and Humid pre-treatment) during the month of July 2011. VOC and volatile sulphur compounds (VSCs) were sampled using multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) and Tenax TA tubes, respectively, with SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption (ATD) coupled with a capillary gas chromatography (GC)/mass spectrometry detector (MSD). One hundred and thirty chemical compounds were determined qualitatively in all the studied points (mainly alkanes, aromatic hydrocarbons, alcohols, aldehydes, esters, and terpenes), from which 86 were quantified due to their odorous characteristics as well as their potentiality of having negative health effects. The application of the present methodology in a municipal solid waste treatment facility has proven to be useful in order to determine which type of VOC contribute substantially to the indoor air odorous charge, and thus it can be a helpful method to prevent the generation of these compounds during the treatment process, as well as to find a solution in order to suppress them.


Subject(s)
Air Pollution, Indoor , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Refuse Disposal , Volatile Organic Compounds/chemistry
5.
J Environ Monit ; 13(9): 2612-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21829856

ABSTRACT

The effect of different sampling exposure times and ambient air pollutant concentrations on the performance of Radiello® samplers for analysis of volatile organic compounds (VOCs) is evaluated. Quadruplicate samples of Radiello® passive tubes were taken for 3, 4, 7 and 14 days. Samples were taken indoors during February and March 2010 and outdoors during July 2010 in La Canonja (Tarragona, Spain). The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detection (MS). The results show significant differences (t-test, p < 0.05) between the amounts of VOCs obtained from the sum of two short sampling periods and a single equivalent longer sampling period for 65% of all the data. 17% of the results show significantly larger amounts of pollutant in the sum of two short sampling periods. Back diffusion due to changes in concentrations together with saturation and competitive effects between the compounds during longer sampling periods could be responsible for these differences. The other 48% of the results that are different show significantly larger amounts in the single equivalent longer sampling period. The remaining 35% of the results do not show significant differences. Although significant differences are observed in the amount of several VOCs collected over two shorter sampling intervals compared to the amount collected during a single equivalent longer sampling period, the ratios obtained are very close to unity (between 0.7 and 1.2 in 75% of cases). We conclude that Radiello® passive samplers are useful tools if their limitations are taken into account and the manufacturer's recommendations are followed.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Volatile Organic Compounds/analysis , Adsorption , Environmental Monitoring/instrumentation , Gas Chromatography-Mass Spectrometry , Time Factors
6.
Talanta ; 85(1): 662-72, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21645756

ABSTRACT

A simple comparison is made to evaluate the relative performance of active and passive sampling methods for the analysis of volatile organic compounds (VOCs) in ambient air. The active sampling is done through a multi-sorbent bed tube (Carbotrap, Carbopack X, Carboxen 569) created in our laboratory and the passive sampling through the Radiello(®) diffusive sampler specified for thermal desorption (filled with Carbograph 4). Daily duplicate samples of multi-sorbent bed tubes were taken during a period of 14 days. During the same period of time, quadruplicate samples of Radiello(®) tubes were taken during 3 days, 4 days, 7 days and 14 days. The sampling was carried out indoors during the months of February and March 2010 and outdoors during the month of July 2010 in La Canonja (Tarragona, Spain). The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detector (MSD). The analytical performance of the two sampling approaches was evaluated by describing several quality assurance parameters. The results show that the analytical performances of the methodologies studied are quite similar. They display low limits of detection, good precision, accuracy and desorption efficiency, and low levels of breakthrough for multi-sorbent bed tubes. However, the two monitoring methods produced varying air-borne concentration data for most of the studied compounds, and the Radiello(®) samplers generally gave higher results. Sampling rates (Q(k)) were determined experimentally, and their values were higher than those supplied by the producer. As the experimental calculation of Q(k) values is generally carried out by the suppliers in exposure chambers with only the target compounds present in the air samples, as well as in concentrations dissimilar to those found in ambient air, the use of constant settled Q(k) can lead to inaccurate results in complex samples.


Subject(s)
Air Pollutants/analysis , Volatile Organic Compounds/analysis , Adsorption , Gas Chromatography-Mass Spectrometry , Limit of Detection
7.
Talanta ; 81(3): 916-24, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20298873

ABSTRACT

A comparison between two types of adsorbent tubes, the commonly used Tenax TA and a multi-sorbent bed (Carbotrap, Carbopack X, Carboxen 569) tube developed in our laboratory, has been done to evaluate their usefulness in the analysis of VOCs in ambient air. Duplicate indoor and outdoor samples of Tenax TA and multi-sorbent tubes of 10, 20, 40, 60 and 90l were taken in Barcelona city (Spain) on July and October of 2009. Breakthrough values (defined as %VOCs found in the back tube) were determined for all sampling volumes connecting two sampling tubes in series. The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detector (MSD). Significant differences between the concentrations obtained-from multi-sorbent bed and Tenax TA tubes are observed for the very volatile compounds (56 degrees C

Subject(s)
Carbon/chemistry , Chemistry Techniques, Analytical , Polymers/chemistry , Volatile Organic Compounds/analysis , Adsorption , Air Pollutants/analysis , Air Pollution , Air Pollution, Indoor/analysis , Automation , Bicyclic Monoterpenes , Environmental Monitoring , Monoterpenes/analysis , Pressure , Temperature
8.
Sci Total Environ ; 402(1): 130-8, 2008 Aug 25.
Article in English | MEDLINE | ID: mdl-18501954

ABSTRACT

In this study, the emissions of volatile organic compounds (VOCs, in this case aromatic hydrocarbons containing one benzene ring and furans) and polycyclic aromatic hydrocarbons (PAHs) from wood recently treated with creosote are examined. The VOCs and PAHs were identified and quantified in the gas phase. Additionally, the PAHs were quantified in the particulate phase. Glass multi-sorbent tubes (Carbotrap, Carbopack X, Carboxen-569) were used to hold the VOCs. The analysis was performed using automatic thermal desorption (ATD) coupled with capillary gas chromatography/mass spectrometry (GC/MS). PAHs vapours were collected on XAD-2 resin, and particulate matter was collected on glass fibre filters. The PAHs were analysed using GC/MS. The main components of the vapours released from the creosote-treated wood were naphthalene, toluene, m+p-xylene, ethylbenzene, o-xylene, isopropylbenzene, benzene and 2-methylnaphthalene. VOCs emission concentrations ranged from 35 mg m(-3) of air on the day of treatment to 5 mg m(-3) eight days later. PAHs emission concentrations ranged from 28 microg m(-3) of air on the day of treatment to 4 microg m(-3) eight days later. The air concentrations of PAHs in particulate matter were composed predominantly of benzo[b+j]fluoranthene, benzo[a]anthracene, chrysene, fluoranthene, benzo[e]pyrene and 1-methylnaphthalene. The emission concentrations of particulate polycyclic aromatic hydrocarbons varied between 0.2 and 43.5 ng m(-3). Finally, the emission factors of VOCs and PAHs were determined.


Subject(s)
Air Pollutants/analysis , Creosote/analysis , Environmental Monitoring , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Wood , Creosote/toxicity , Gas Chromatography-Mass Spectrometry , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...