Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 281: 130750, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34029965

ABSTRACT

Aquatic environments are especially susceptible to being contaminated by pesticides used in agricultural fields. Methyl viologen (MV) is an herbicide with high effectiveness for the control of unwanted land plants; however, it also has a high toxicity towards the algae in the aquatic environment. The objective of this work was to describe the effect of MV on photosynthetic metabolism and its relationship with respiration, growth and the content of photosynthetic pigments of Chlorella vulgaris. The cultures of C. vulgaris were exposed for 72 h at different concentrations of methyl viologen. The results show that growth, pigment content and metabolic activity decrease as the concentration of MV increases. Analysis of the photochemical activity indicates that MV produces an inhibition of electron transport between quinone A and quinone B of photosystem II. The inhibition of photosynthetic electron transport is directly related to the reduction of metabolic activity and cell growth. The results found in this research show that methyl viologen can be a toxic pollutant for primary producers in aquatic environments.


Subject(s)
Chlorella vulgaris , Chlorella vulgaris/metabolism , Chlorophyll , Chlorophyll A , Paraquat/toxicity , Photosynthesis , Photosystem II Protein Complex/metabolism
2.
Bioresour Technol ; 274: 252-260, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30529329

ABSTRACT

A Chlorella vulgaris UTEX 26 semicontinuous culture was implemented in 2000 L raceways with M medium during spring season at greenhouse conditions. Areal biomass productivities between 20 and 26 g m-2 d-1 were reached on the third day. The maximal areal lipid productivity obtained was 6.1 g m-2 d-1 and an increment in the saturated fatty acids (SFA) proportion (C14-C18) was favored in comparison with the fatty acids obtained with M medium in photobioreactors of 1 L and photoperiod light:darkness 12:12 h. After the eighth day of the culture or biomass concentrations above 0.25 g L-1, the microalgal cultures were prone to contamination by ciliates and amoebae, due to the sugars excreted by C. vulgaris UTEX 26. The periodical addition of NH4HCO3 to the microalgal culture maintained the ammonium concentration between 25 and 50 mg L-1, which contributed to diminish the contamination risks by protozoa.


Subject(s)
Biomass , Chlorella vulgaris/metabolism , Lipids/biosynthesis , Microalgae , Photobioreactors , Ponds , Seasons
3.
Ecotoxicol Environ Saf ; 132: 311-7, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27344399

ABSTRACT

Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.


Subject(s)
Chlorella vulgaris/drug effects , Environmental Monitoring/methods , Photosynthesis/drug effects , Streptomycin/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyll/metabolism , Chlorophyll A , Electron Transport/drug effects , Fluorescence , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism
4.
Environ Sci Pollut Res Int ; 22(14): 10811-23, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25772869

ABSTRACT

Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.


Subject(s)
Chlorella vulgaris/metabolism , Coloring Agents/metabolism , Congo Red/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Animals , Azo Compounds/metabolism , Azo Compounds/toxicity , Biodegradation, Environmental , Cladocera/drug effects , Coloring Agents/toxicity , Congo Red/toxicity , Daphnia/drug effects , Inhibitory Concentration 50 , Textile Industry , Toxicity Tests, Acute , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Water Purification
5.
Ecotoxicol Environ Saf ; 108: 72-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042247

ABSTRACT

Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments.


Subject(s)
Chlorella vulgaris/drug effects , Congo Red/toxicity , Microalgae/drug effects , Photosynthesis/drug effects , Cell Respiration/drug effects , Chlorella vulgaris/growth & development , Chlorella vulgaris/metabolism , Chlorophyll/analysis , Chlorophyll A , Electron Transport/drug effects , Photosystem II Protein Complex/drug effects
6.
Chemosphere ; 67(11): 2274-81, 2007 May.
Article in English | MEDLINE | ID: mdl-17267014

ABSTRACT

In the present paper we investigated the effects of sub-lethal concentrations of Cu2+ in the growth and metabolism of Scenedesmus incrassatulus. We found that the effect of Cu2+ on growth, photosynthetic pigments (chlorophylls and carotenoids) and metabolism do not follow the same pattern. Photosynthesis was more sensitive than respiration. The analysis of chlorophyll a fluorescence transient shows that the effect of sub-lethal Cu2+ concentration in vivo, causes a reduction of the active PSII reaction centers and the primary charge separation, decreasing the quantum yield of PSII, the electron transport rate and the photosynthetic O2 evolution. The order of sensitivity found was: Growth>photosynthetic pigments content=photosynthetic O2 evolution>photosynthetic electron transport>respiration. The uncoupled relationship between growth and metabolism is discussed.


Subject(s)
Copper/toxicity , Photosynthesis/drug effects , Scenedesmus/growth & development , Scenedesmus/metabolism , Carotenoids/biosynthesis , Chlorophyll/biosynthesis , Chlorophyll A , Electron Transport/drug effects , Kinetics , Oxygen/metabolism , Scenedesmus/drug effects , Spectrometry, Fluorescence
7.
Chemosphere ; 64(1): 1-10, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16405948

ABSTRACT

Microalgae are aquatic organisms possessing molecular mechanisms that allow them to discriminate non-essential heavy metals from those essential ones for their growth. The different detoxification processes executed by algae are reviewed with special emphasis on those involving the peptides metallothioneins, mainly the post transcriptionally synthesized class III metallothioneins or phytochelatins. Also, the features that make microalgae suitable organisms technologies specially to treat water that is heavily polluted with metals is discussed.


Subject(s)
Eukaryota/metabolism , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biodegradation, Environmental , Glutathione/metabolism , Metallothionein/metabolism , Metals, Heavy/metabolism , Phytochelatins , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...