Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tuberculosis (Edinb) ; 136: 102247, 2022 09.
Article in English | MEDLINE | ID: mdl-35977438

ABSTRACT

Non-tuberculous mycobacteria are a heterogeneous group of environmental bacteria and other than the well-known Mycobacterium tuberculosis complex and Mycobacterium leprae. They could cause localized or disseminated infections. Mycobacterium chelonae and Mycobacterium fortuitum are among the most clinically relevant non-tuberculous mycobacteria species. The infections treatment is complex since they are resistant to antituberculosis drugs and the biofilm formation makes them impermeable to several antibiotics. Antimicrobial photodynamic therapy (aPDT) constitutes an alternative to eliminate pathogens, principally those antimicrobials resistant. Among explored photosensitizers, phthalocyanines are considered excellent, but with a disadvantage: a lack solubility in aqueous media. Consequently, several nanocarriers have been studied in the last years. In this work, a Zn-phthalocyanine into liposomes was evaluated to photoinactivate M. fortuitum and M. chelonae. The results show a higher photodynamic activity of ZnPc into liposomes respect to solution. Furthermore, M. fortuitum was more sensible to aPDT than M. chelonae.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium chelonae , Mycobacterium tuberculosis , Antitubercular Agents/therapeutic use , Humans , Isoindoles , Liposomes , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Organometallic Compounds , Photosensitizing Agents/pharmacology , Zinc Compounds
2.
Animals (Basel) ; 11(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34679995

ABSTRACT

Research is ongoing to find nutritional methane (CH4) mitigation strategies with persistent effects that can be applied to grazing ruminants. Lipid addition to dairy cow diets has shown potential as means to decrease CH4 emissions. This study evaluated the effects of oilseeds on CH4 emission and production performance of grazing lactating dairy cows. Sixty Holstein Friesian cows grazing pasture were randomly allocated to 1 of 4 treatments (n = 15): supplemented with concentrate without oilseeds (CON), with whole cottonseed (CTS), rapeseed (RPS) or linseed (LNS). Oilseeds were supplemented during weeks 1-16 (spring period) and 17-22 (summer period), and the autumn period (wk 23-27) was used to evaluate treatment carryover effects. Cows fed CTS decreased CH4 yield by 14% compared to CON in spring, but these effects did not persist after 19 weeks of supplementation (summer). Compared to CON, RPS decreased milk yield and CTS increased milk fat concentration in both spring and summer. In summer, CTS also increased milk protein concentration but decreased milk yield, compared to CON. In spring, compared to CON, CTS decreased most milk medium-chain fatty acids (FA; 8:0, 12:0, 14:0 and 15:0) and increased stearic, linoleic and rumenic FA, and LNS increased CLA FA. There were no carry-over effects into the autumn period. In conclusion, supplementation of grazing dairy cows with whole oilseeds resulted in mild effects on methane emissions and animal performance. In particular, supplementing with CTS can decrease CH4 yield without affecting milk production, albeit with a mild and transient CH4 decrease effect. Long term studies conducted under grazing conditions are important to provide a comprehensive overview of how proposed nutritional CH4 mitigation strategies affect productivity, sustainability and consumer health aspects.

SELECTION OF CITATIONS
SEARCH DETAIL
...