Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20585, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663824

ABSTRACT

Carbamazepine (CBZ) was incorporated into layered double hydroxides (LDH) to be used as a controlled drug system in solid tumors. CBZ has a formal charge of zero, so its incorporation in the anionic clay implies a challenge. Aiming to overcome this problem, CBZ was loaded into LDH with sodium cholate (SC), a surfactant with negative charge and, for comparison, without SC by the reconstruction method. Surprisingly, it was found that both resultant nanocomposites had similar CBZ encapsulation efficiency, around 75%, and the LDH-CBZ system without SC showed a better performance in relation to the release kinetics of CBZ in simulated body fluid (pH 7.4) and acetate buffer simulating the cellular cytoplasm (pH 4.8) than the system with SC. The CBZ dimensions were measured with Chem3D and, according to the basal spacing obtained from X-ray patterns, it can be arranged in the LDH-CBZ system as a monolayer with the long axis parallel to the LDH layers. Fourier transform infrared spectroscopy and solid state NMR measurements confirmed the presence of the drug, and thermogravimetric analyses showed an enhanced thermal stability for CBZ. These results have interesting implications since they increase the spectrum of LDH application as a controlled drug system to a large number of nonionic drugs, without the addition of other components.

2.
Sci Rep ; 8(1): 13253, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185887

ABSTRACT

The adequate formulation of topical vehicles to treat skin diseases is particularly complex. A desirable formulation should enhance the accumulation of the active drugs in the target tissue (the skin), while avoiding the penetration enhancement to be so large that the drugs reach the systemic circulation in toxic amounts. We have evaluated the transcutaneous penetration of three drugs chosen for their widely variable physicochemical properties: Amphotericin B, Imiquimod and Indole. We incorporated the drugs in fluid or ultra-flexible liposomes. Ultra-flexible liposomes produced enhancement of drug penetration into/through human skin in all cases in comparison with fluid liposomes without detergent, regardless of drug molecular weight. At the same time, our results indicate that liposomes can impede the transcutaneous penetration of molecules, in particular small ones.


Subject(s)
Amphotericin B/pharmacokinetics , Imiquimod/pharmacokinetics , Indoles/pharmacokinetics , Administration, Cutaneous , Amphotericin B/administration & dosage , Amphotericin B/chemistry , Animals , Drug Delivery Systems , Drug Stability , Humans , Imiquimod/administration & dosage , Imiquimod/chemistry , Indoles/administration & dosage , Indoles/chemistry , Liposomes , Mice , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...