Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biochem Pharmacol ; 163: 362-370, 2019 05.
Article in English | MEDLINE | ID: mdl-30849304

ABSTRACT

Treacher Collins Syndrome (TCS) is a congenital disease characterized by defects in the craniofacial skeleton and absence of mental alterations. Recently we modelled TCS in zebrafish (Danio rerio) embryos through the microinjection of Morpholino® oligonucleotides blocking the translation of the ortholog of the main causative gene (TCOF1). We showed that Cnbp, a key cytoprotective protein involved in normal rostral head development, was detected in lower levels (without changes in its mRNA expression) in TCS-like embryos. As previous reports suggested that Cnbp is degraded through the proteasomal pathway, we tested whether proteasome inhibitors (MG132 and Bortezomib (Velcade®, Millennium laboratories)) were able to ameliorate cranial skeleton malformations in TCS. Here we show that treatment with both proteasome inhibitors produced a robust craniofacial cartilage phenotype recovery. This recovery seems to be consequence of a decreased degradation of Cnbp in TCS-like embryos. Critical TCS manifestations, such as neuroepithelial cell death and cell redox imbalance were attenuated. Thus, proteasome inhibitors may offer an opportunity for TCS molecular and phenotypic manifestation's prevention. Although further development of new safe inhibitors compatible with administration during pregnancy is required, our results encourage this therapeutic approach.


Subject(s)
Gene Expression Regulation, Developmental/drug effects , Mandibulofacial Dysostosis/metabolism , Morpholinos/adverse effects , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Gene Knockdown Techniques , Mandibulofacial Dysostosis/pathology , Phosphoproteins/genetics , Zebrafish , Zebrafish Proteins/genetics
2.
Cell Death Dis ; 7(10): e2397, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27711076

ABSTRACT

Treacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients. As it was reported for a Tcof1+/- mouse model, Treacle depletion in zebrafish caused reduced rRNA transcription, stabilization of Tp53 and increased cell death in the cephalic region. An increase of ROS along with the overexpression of redox-responsive genes was detected; furthermore, treatment with antioxidants ameliorated the phenotypic defects of craniofacial anomalies in TCS-like larvae. On the other hand, Treacle depletion led to a lowering in the abundance of Cnbp, a protein required for proper craniofacial development. Tcof1 knockdown in transgenic zebrafish overexpressing cnbp resulted in barely affected craniofacial cartilage development, reinforcing the notion that Cnbp has a role in the pathogenesis of TCS. The cnbp overexpression rescued the TCS phenotype in a dose-dependent manner by a ROS-cytoprotective action that prevented the redox-responsive genes' upregulation but did not normalize the synthesis of rRNAs. Finally, a positive correlation between the expression of CNBP and TCOF1 in mesenchymal cells from both control and TCS subjects was found. Based on this, we suggest CNBP as an additional target for new alternative therapeutic treatments to reduce craniofacial defects not only in TCS but also in other neurocristopathies.


Subject(s)
Craniofacial Abnormalities/complications , Craniofacial Abnormalities/genetics , Mandibulofacial Dysostosis/complications , Mandibulofacial Dysostosis/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Zebrafish Proteins/metabolism , Animals , Craniofacial Abnormalities/pathology , Embryo, Nonmammalian/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Mandibulofacial Dysostosis/pathology , Mesoderm/metabolism , Models, Biological , Oxidation-Reduction , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Reactive Oxygen Species/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...