Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 101: 359-376, 2022 03.
Article in English | MEDLINE | ID: mdl-35065197

ABSTRACT

Stressful experience-induced cocaine-related behaviors are associated with a significant impairment of glutamatergic mechanisms in the Nucleus Accumbens core (NAcore). The hallmarks of disrupted glutamate homeostasis following restraint stress are the enduring imbalance of glutamate efflux after a cocaine stimulus and increased basal concentrations of extracellular glutamate attributed to GLT-1 downregulation in the NAcore. Glutamate transmission is tightly linked to microglia functioning. However, the role of microglia in the biological basis of stress-induced addictive behaviors is still unknown. By using minocycline, a potent inhibitor of microglia activation with anti-inflammatory properties, we determined whether microglia could aid chronic restraint stress (CRS)-induced glutamate homeostasis disruption in the NAcore, underpinning stress-induced cocaine self-administration. In this study, adult male rats were restrained for 2 h/day for seven days (day 1-7). From day 16 until completing the experimental protocol, animals received a vehicle or minocycline treatment (30 mg/Kg/12h i.p.). On day 21, animals were assigned to microscopic, biochemical, neurochemical or behavioral studies. We confirm that the CRS-induced facilitation of cocaine self-administration is associated with enduring GLT-1 downregulation, an increase of basal extracellular glutamate and postsynaptic structural plasticity in the NAcore. These alterations were strongly related to the CRS-induced reactive microglia and increased TNF-α mRNA and protein expression, since by administering minocycline, the impaired glutamate homeostasis and the facilitation of cocaine self-administration were prevented. Our findings are the first to demonstrate that minocycline suppresses the CRS-induced facilitation of cocaine self-administration and glutamate homeostasis disruption in the NAcore. A role of microglia is proposed for the development of glutamatergic mechanisms underpinning stress-induced vulnerability to cocaine addiction.


Subject(s)
Cocaine , Animals , Cocaine/metabolism , Glutamic Acid/metabolism , Male , Microglia/metabolism , Minocycline/metabolism , Minocycline/pharmacology , Nucleus Accumbens/metabolism , Rats , Rats, Sprague-Dawley
2.
Neurobiol Stress ; 15: 100349, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34169122

ABSTRACT

Actin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction. We assess whether the neurobiological mechanisms that modulate repeated-cocaine administration also occur in a chronic restraint stress-induced cocaine self-administration model. We also determine if chronic stress induces alterations in dendritic spines through dysregulation of cofilin activity in the NA core. Here, we show that the inhibition of cofilin expression in the NA core using viral short-hairpin RNA is sufficient to prevent the cocaine sensitization induced by chronic stress. The reduced cofilin levels also impede a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor surface expression enhancement and promote the reduction of head diameter in animals pre-exposed to stress after a cocaine challenge in the NA core. Moreover, downregulation of cofilin expression prevents facilitation of the acquisition of cocaine self-administration (SA) in male rats pre-exposed to chronic stress without modifying performance in sucrose SA. These findings reveal a novel, crucial role for cofilin in the neurobiological mechanisms underpinning the comorbidity between stress exposure and addiction-related disorders.

4.
ACS Nano ; 11(10): 9678-9688, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28853862

ABSTRACT

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates.

5.
ACS Nano ; 8(9): 8942-58, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25137054

ABSTRACT

Detecting, imaging, and being able to localize the distribution of several cell membrane receptors on a single neuron are very important topics in neuroscience research. In the present work, the distribution of metabotropic glutamate receptor 1a (mGluR1a) density on neuron cells on subcellular length scales is determined by evaluating the role played by protein kinase D1 (PKD1) in the trafficking of membrane proteins, comparing the distribution of mGluR1a in experiments performed in endogenous PKD1 expression with those in the presence of kinase-inactive protein kinase D1 (PKD1-kd). The localization, distribution, and density of cell surface mGluR1a were evaluated using 90 nm diameter Au nanoparticle (NP) probes specifically functionalized with a high-affinity and multivalent labeling function, which allows not only imaging NPs where this receptor is present but also quantifying by optical means the NP density. This is so because the NP generates a density (ρ)-dependent SERS response that facilitated a spatial mapping of the mGluR1a density distribution on subcellular length scales (dendrites and axons) in an optical microscope. The measured ρ values were found to be significantly higher on dendrites than on axons for endogenous PKD1, while an increase of ρ on axons was observed when PKD1 is altered. The spatial distribution of the NP immunolabels through scanning electron microscopy (SEM) confirmed the results obtained by fluorescence bright-field analysis and dark-field spectroscopy and provided additional structural details. In addition, it is shown using electrodynamic simulations that SERS spectroscopy could be a very sensitive tool for the spatial mapping of cell membrane receptors on subcellular length scales, as SERS signals are almost linearly dependent on NP density and therefore give indirect information on the distribution of cell membrane proteins. This result is important since the calibration of the ρ-dependent near-field enhancement of the Au immunolabels through correlation of SERS and SEM paves the way toward quantitative immunolabeling studies of cell membrane proteins involved in neuron polarity. From the molecular biology point of view, this study shows that in cultured hippocampal pyramidal cells mGluR1a is predominantly transported to dendrites and excluded from axons. Expression of kinase-inactive protein kinase D1 (PKD1-kd) dramatically and selectively alters the intracellular trafficking and membrane delivery of mGluR1a-containing vesicles.


Subject(s)
Cell Membrane/metabolism , Molecular Probes/chemistry , Molecular Probes/metabolism , Neurons/cytology , Protein Kinase C/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Axons/metabolism , Gene Expression Regulation, Enzymologic , Gold/chemistry , Gold/metabolism , Metal Nanoparticles , Optical Imaging , Protein Transport , Rats
6.
ACS Nano ; 8(5): 4395-402, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24787120

ABSTRACT

We report on a combined study of Rayleigh and Raman scattering spectroscopy, 3D electron tomography, and discrete dipole approximation (DDA) calculations of a single, complex-shaped gold nanoparticle (NP). Using the exact reconstructed 3D morphology of the NP as input for the DDA calculations, the experimental results can be reproduced with unprecedented precision and detail. We find that not only the exact NP morphology but also the surroundings including the points of contact with the substrate are of crucial importance for a correct prediction of the NP optical properties. The achieved accuracy of the calculations allows determining how many of the adsorbed molecules have a major contribution to the Raman signal, a fact that has important implications for analyzing experiments and designing sensing applications.

7.
J Phys Condens Matter ; 25(12): 125304, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23449278

ABSTRACT

Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.


Subject(s)
Metal Nanoparticles/chemistry , Quantum Theory , Models, Molecular , Molecular Conformation
8.
Nano Lett ; 10(6): 2097-104, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20438116

ABSTRACT

The realization of materials at the nanometer scale creates new challenges for quantitative characterization and modeling as many physical and chemical properties at the nanoscale are highly size and shape-dependent. In particular, the accurate nanometrological characterization of noble metal nanoparticles (NPs) is crucial for understanding their optical response that is determined by the collective excitation of conduction electrons, known as localized surface plasmons. Its manipulation gives place to a variety of applications in ultrasensitive spectroscopies, photonics, improved photovoltaics, imaging, and cancer therapy. Here we show that by combining electron tomography with electrodynamic simulations an accurate optical model of a highly irregular gold NP synthesized by chemical methods could be achieved. This constitutes a novel and rigorous tool for understanding the plasmonic properties of real three-dimensional nano-objects.

9.
J Phys Chem A ; 113(16): 4489-97, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19290644

ABSTRACT

In this paper, we investigate theoretically the electromagnetic field enhancement arising from excitation of silver and gold nanowires (NWs) of finite length, capable of sustaining surface plasmon resonances of different multipole order, using the Discrete Dipole Approximation (DDA). The influence of NW length on the degree of enhancement and confinement of the electromagnetic field for each surface plasmon mode is analyzed by a 3D mapping of the near field for different planes around the NW as well by calculating its variation with distance along two different directions, one parallel to and the other perpendicular to the NW axis, outside of the NW. It was found that the enhancement is still significant at relative large distances from the NW end, its decay being of much longer range than that predicted by a simple dipole approximation, especially at near-infrared wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...