Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36671535

ABSTRACT

Shrimp antilipopolysaccharide factors (ALFs) form a multifunctional and diverse family of antimicrobial host defense peptides (AMPs) composed of seven members (groups A to G), which differ in terms of their primary structure and biochemical properties. They are amphipathic peptides with two conserved cysteine residues stabilizing a central ß-hairpin that is understood to be the core region for their biological activities. In this study, we synthetized three linear (cysteine-free) peptides based on the amino acid sequence of the central ß-hairpin of the newly identified shrimp (Litopenaeus vannamei) ALFs from groups E to G. Unlike whole mature ALFs, the ALF-derived peptides exhibited an α-helix secondary structure. In vitro assays revealed that the synthetic peptides display a broad spectrum of activity against both Gram-positive and Gram-negative bacteria and fungi but not against the protozoan parasites Trypanosoma cruzi and Leishmania (L.) infantum. Remarkably, they displayed synergistic effects and showed the ability to permeabilize bacterial membranes, a mechanism of action of classical AMPs. Having shown low cytotoxicity to THP-1 human cells and being active against clinical multiresistant bacterial isolates, these nature-inspired peptides represent an interesting class of bioactive molecules with biotechnological potential for the development of novel therapeutics in medical sciences.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Humans , Anti-Bacterial Agents/pharmacology , Protein Conformation, alpha-Helical , Lipopolysaccharides/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Microbial Sensitivity Tests
3.
J Invertebr Pathol ; 182: 107586, 2021 06.
Article in English | MEDLINE | ID: mdl-33812924

ABSTRACT

The aim of this study was to identify and characterize, at the molecular and transcriptional levels, sequences encoding the different members of the four families of shrimp antimicrobial peptides (AMPs) in species of the genus Farfantepenaeus. The identification of the AMP sequences was performed by in silico analysis as well as by molecular cloning and nucleotide sequencing. We identified all seven shrimp ALFs (ALF-A to ALF-G), both Type IIa and Type IIb crustins as well as two stylicins (STY1 and STY2) in Farfantepenaeus. Only two genes (PEN1/2 and PEN4) of the four-member penaeidin family (PEN1/2 to PEN5) were found and this is the first report of stylicins as well as of several additional members of ALFs, crustins and penaeidins in species of the genus Farfantepenaeus. All AMP genes have shown to be constitutively transcribed in the shrimp immune cells (hemocytes), except for ALF-G. Finally, the transcriptional profile of the different AMPs was assessed in the hemocytes of F. paulensis (pink shrimp) following an experimental infection with the opportunistic filamentous fungus Fusarium solani. We found that while the expression of ALF-B was induced at 24 h, the STY2 gene was down-regulated at 48 h post-challenge. These results provide evidence of the molecular diversity of AMPs from shrimp of the genus Farfantepenaeus in terms of sequences, biochemical properties and expression profiles in response to infectious diseases.


Subject(s)
Fusarium/physiology , Gene Expression , Host-Pathogen Interactions , Penaeidae/genetics , Pore Forming Cytotoxic Proteins/genetics , Animals , Penaeidae/microbiology , Pore Forming Cytotoxic Proteins/metabolism
4.
Dev Comp Immunol ; 106: 103618, 2020 05.
Article in English | MEDLINE | ID: mdl-31972176

ABSTRACT

The super-intensive BioFloc Technology (BFT) system has been highlighted as a promising eco-friendly alternative to the traditional shrimp rearing systems. To gain insight into the impact of environmental rearing conditions on shrimp intestinal immunity, we assessed the expression profile of key immunological genes in the midgut of Litopenaeus vannamei shrimp reared in two contrasting culture systems: the indoor super-intensive BFT and the outdoor intensive Green-Water System (GWS). From the 30 analyzed genes, the expression levels of 25 genes were higher in the midgut of shrimp reared in BFT than in GWS. The main functional categories represented in BFT-shrimp were the prophenoloxidase-activating system, immune signaling, antimicrobial peptides, and RNA interference pathway. Comparatively, only the RNAi pathway gene Dicer-1 (LvDcr1) was more expressed in animals from the GWS group. However, despite the differences in gene expression, the total midgut bacterial abundance was similar between the experimental groups. Altogether, our results suggest that the microbial-rich environment offered by the BFT system can be acting as an immunostimulant by altering the immune expression profile of the midgut. The gene expression level found in GWS animals could be related to the chronic presence of the IMNV in the Brazilian Northeast. Knowing the effects of environmental stress factors on the intestinal immune defenses can provide an in-depth understanding of the relationship between cultivated shrimp and the major pathogens affecting the shrimp industry.


Subject(s)
Aquaculture/methods , Gastrointestinal Tract/physiology , Penaeidae/immunology , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Brazil , Catechol Oxidase/genetics , Catechol Oxidase/metabolism , Environment , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Immunity, Innate , Immunization , Ribonuclease III/genetics , Ribonuclease III/metabolism , Signal Transduction/immunology
5.
Fish Shellfish Immunol ; 88: 47-52, 2019 May.
Article in English | MEDLINE | ID: mdl-30831245

ABSTRACT

Herein, we evaluated the immunomodulatory and the antiviral protective properties of a cyanobacteria-enriched diet on the immune responses of the Pacific white shrimp Litopenaeus vannamei challenged with the White spot syndrome virus (WSSV). Shrimp were fed with an Arthrospira platensis supplemented feed during 20 days, and its effects were examined by evaluating well-known standardized shrimp immune parameters (total hemocyte counts, total protein concentration, phenoloxidase activity, and serum agglutination titer). Additionally, we assessed the expression of crucial genes involved in both hemolymph- and gut-based immunities related to the shrimp capacity to circumvent viral and microbial infections. Dietary supplementation improved shrimp survival rates after challenge with a median lethal dose of WSSV. From all immune parameters tested, only the serum agglutination titer was higher in treated animals. On the other hand, the expression of some representative marker genes from different immune response pathways was only modulated in the midgut and not in the circulating hemocytes, suggesting that this feed supplementation can be used as an attractive strategy to enhance immunity in shrimp gut. Altogether, our results evidence the immunomodulatory properties of A. platensis supplemented feed in shrimp humoral and intestinal defenses and highlight the potential use of cyanobacteria-based immunostimulants in shrimp farming for protection against infectious diseases.


Subject(s)
Animal Feed/analysis , Penaeidae/immunology , Spirulina , Adjuvants, Immunologic , Animals , Aquaculture/methods , Diet/veterinary , Gene Expression , Hemolymph/immunology , Intestines/immunology , Penaeidae/virology , White spot syndrome virus 1/physiology
6.
Fish Shellfish Immunol ; 86: 82-92, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30439499

ABSTRACT

Stylicins are anionic antimicrobial host defense peptides (AAMPs) composed of a proline-rich N-terminal region and a C-terminal portion containing 13 conserved cysteine residues. Here, we have increased our knowledge about these unexplored crustacean AAMPs by the characterization of novel stylicin members in the most cultivated penaeid shrimp, Litopenaeus vannamei. We showed that the L. vannamei stylicin family is composed of two members (Lvan-Stylicin1 and Lvan-Stylicin2) encoded by different loci which vary in gene copy number. Unlike the other three gene-encoded antimicrobial peptide families from penaeid shrimp, the expression of Lvan-Stylicins is not restricted to hemocytes. Indeed, they are also produced by the columnar epithelial cells lining the midgut and its anterior caecum. Interestingly, Lvan-Stylicins are simultaneously transcribed at different transcriptional levels in a single shrimp and are differentially modulated in hemocytes after infections. While the expression of both genes showed to be responsive to damage-associated molecular patterns, only Lvan-Stylicin2 was induced after a Vibrio infection. Besides, Lvan-Stylicins also showed a distinct pattern of gene expression in the three portions of the midgut (anterior, middle and posterior) and during shrimp development. We provide here the first evidence of the diversity of the stylicin antimicrobial peptide family in terms of sequence and gene expression distribution and regulation.


Subject(s)
Hemocytes/metabolism , Intestines/cytology , Penaeidae/metabolism , Peptides/immunology , Vibrio/physiology , White spot syndrome virus 1/physiology , Amino Acid Sequence , Animals , Base Sequence , Gene Expression Regulation/immunology , Host-Pathogen Interactions , Penaeidae/immunology , Vibrio/classification
7.
Mar Drugs ; 16(10)2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30314303

ABSTRACT

Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with a central ß-hairpin structure able to bind to microbial components. Mining sequence databases for ALFs allowed us to show the remarkable diversity of ALF sequences in shrimp. We found at least seven members of the ALF family (Groups A to G), including two novel Groups (F and G), all of which are encoded by different loci with conserved gene organization. Phylogenetic analyses revealed that gene expansion and subsequent diversification of the ALF family occurred in crustaceans before shrimp speciation occurred. The transcriptional profile of ALFs was compared in terms of tissue distribution, response to two pathogens and during shrimp development in Litopenaeus vannamei, the most cultivated species. ALFs were found to be constitutively expressed in hemocytes and to respond differently to tissue damage. While synthetic ß-hairpins of Groups E and G displayed both antibacterial and antifungal activities, no activity was recorded for Group F ß-hairpins. Altogether, our results showed that ALFs form a family of shrimp AMPs that has been the subject of intense diversification. The different genes differ in terms of tissue expression, regulation and function. These data strongly suggest that multiple selection pressures have led to functional diversification of ALFs in shrimp.


Subject(s)
Anti-Infective Agents/pharmacology , Arthropod Proteins/genetics , Arthropod Proteins/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Penaeidae/genetics , Tissue Distribution/genetics , Amino Acid Sequence , Animals , Anti-Infective Agents/metabolism , Arthropod Proteins/metabolism , Hemocytes/metabolism , Penaeidae/metabolism , Phylogeny , Sequence Alignment , Transcription, Genetic/drug effects
8.
Mar Drugs ; 16(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337853

ABSTRACT

Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or "Crustins" and Type IIb or "Crustin-like") possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Penaeidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular/methods , Gene Expression Regulation/genetics , Hemocytes/microbiology , Hemocytes/virology , Milk Proteins/genetics , Penaeidae/microbiology , Penaeidae/virology , Phylogeny , Sequence Alignment , Transcription, Genetic/genetics , Vibrio/genetics , White spot syndrome virus 1/genetics
9.
Fish Shellfish Immunol ; 70: 750-758, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28923525

ABSTRACT

Hemocyte populations of the pearl oyster Pteria hirundo were characterized at morphological, ultrastructural and functional levels. Three main hemocyte populations were identified: hyalinocytes, granulocytes and blast-like cells. Hyalinocytes were the most abundant population (88.2%) characterized by the presence of few or no granules in the cytoplasm and composed by two subpopulations, large and small hyalinocytes. Comparatively, granulocytes represented 2.2% of the hemocyte population and were characterized by the presence of numerous large electron-lucid granules in the cytoplasm. Finally, the blast-like cells (9.5%) were the smallest hemocytes, showing spherical shape and a high nucleus/cytoplasm ratio. Hemocytes exhibited a significant phagocytic capacity for inert particles (38.5%) and showed to be able to produce microbicidal molecules, such as reactive oxygen species (ROS) (ex vivo assays). The immune role of hemocytes was further investigated in the P. hirundo defense against the Gram-negative Vibrio alginolyticus. A significant decrease in the total number of hemocytes was observed at 24 h following injection of V. alginolyticus or sterile seawater (injury control) when compared to naïve (unchallenged) animals, indicating the migration of circulating hemocytes to the sites of infection and tissue damage. Bacterial agglutination was only observed against Gram-negative bacteria (Vibrio) but not against to marine Gram-positive-bacteria. Besides, an increase in the agglutination titer was observed against V. alginolyticus only in animals previously infected with this same bacterial strain. These results suggest that agglutinins or lectin-like molecules may have been produced in response to this particular microorganism promoting a specific recognition. The ultrastructural and functional characterization of P. hirundo hemocytes constitutes a new important piece of the molluscan immunity puzzle that can also contribute for the improvement of bivalve production sustainability.


Subject(s)
Hemocytes/immunology , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Ostreidae/immunology , Vibrio/physiology , Agglutination , Animals
10.
Fish Shellfish Immunol ; 56: 123-126, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27380968

ABSTRACT

Fibrinogen-related proteins (FREPs) comprise a large family of microbial recognition proteins involved in many biological functions in both vertebrate and invertebrate animals. By taking advantage of publicly accessible databases, we have identified a FREP-like homolog in the most cultivated penaeid shrimp, Litopenaeus vannamei (LvFrep). The obtained sequence showed a conserved fibrinogen-related domain (FReD) and displayed significant similarities to FREP-like proteins from other invertebrates and to ficolins from crustaceans. The expression of LvFrep appeared to be limited to circulating hemocytes. Interestingly, LvFrep gene expression was induced in shrimp hemocytes only in response to a Vibrio infection but not to the White spot syndrome virus (WSSV). Moreover, LvFrep transcript levels were detected early in fertilized eggs, suggesting the participation of this immune-related gene in the antimicrobial defenses during shrimp development.


Subject(s)
Fibrinogen/genetics , Gene Expression Regulation , Penaeidae/genetics , Penaeidae/immunology , Vibrio/physiology , White spot syndrome virus 1/physiology , Animals , Fibrinogen/chemistry , Fibrinogen/metabolism , Hemocytes/metabolism , Ovum/metabolism , Penaeidae/classification , Penaeidae/growth & development , Phylogeny , Sequence Analysis, Protein
11.
Dis Aquat Organ ; 114(2): 89-98, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25993884

ABSTRACT

Disease in Pacific white shrimp Litopenaeus vannamei caused by the infectious myonecrosis virus (IMNV) causes significant socioeconomic impacts in infection-prone shrimp aquaculture regions. The use of synthetic dsRNA to activate an RNA interference (RNAi) response is being explored as a means of disease prophylaxis in farmed shrimp. Here, survival was tracked in L. vannamei injected with long synthetic dsRNAs targeted to IMNV open reading frame (ORF) 1a, ORF1b, and ORF2 genome regions prior to injection challenge with IMNV, and real-time RT-PCR was used to track the progress of IMNV infection and mRNA expression levels of the host genes sid1, dicer2, and argonaute2. Injection of dsRNAs targeting the ORF1a and ORF1b genes but not the ORF2 gene strongly inhibited IMNV replication over a 3 wk period following IMNV challenge, and resulted in 90 and 83% shrimp survival, respectively. Host gene mRNA expression data indicated that the Sid1 protein, which forms a transmembrane channel involved in cellular import/export of dsRNA, increased in abundance most significantly in shrimp groups that were most highly protected by virus-specific dsRNA injection. Subclinical IMNV infections present in the experimental L. vannamei used increased markedly in the 2 d between injection of any of the 4 virus-specific or non-specific dsRNAs tested and IMNV challenge. While handling and injection stress are implicated in increasing IMNV replication levels, the underlying molecular factors that may have been involved remain to be elucidated.


Subject(s)
Penaeidae/virology , RNA Interference , RNA, Viral/metabolism , Totiviridae/genetics , Totiviridae/physiology , Animals , Gene Expression Regulation, Viral , Host-Pathogen Interactions , RNA, Messenger , Time Factors , Virus Replication/physiology
12.
PLoS One ; 8(7): e67937, 2013.
Article in English | MEDLINE | ID: mdl-23861837

ABSTRACT

Antilipopolysaccharide factors (ALFs) have been described as highly cationic polypeptides with a broad spectrum of potent antimicrobial activities. In addition, ALFs have been shown to recognize LPS, a major component of the Gram-negative bacteria cell wall, through conserved amino acid residues exposed in the four-stranded ß-sheet of their three dimensional structure. In penaeid shrimp, ALFs form a diverse family of antimicrobial peptides composed by three main variants, classified as ALF Groups A to C. Here, we identified a novel group of ALFs in shrimp (Group D ALFs), which corresponds to anionic polypeptides in which many residues of the LPS binding site are lacking. Both Group B (cationic) and Group D (anionic) shrimp ALFs were produced in a heterologous expression system. Group D ALFs were found to have impaired LPS-binding activities and only limited antimicrobial activity compared to Group B ALFs. Interestingly, all four ALF groups were shown to be simultaneously expressed in an individual shrimp and to follow different patterns of gene expression in response to a microbial infection. Group B was by far the more expressed of the ALF genes. From our results, nucleotide sequence variations in shrimp ALFs result in functional divergence, with significant differences in LPS-binding and antimicrobial activities. To our knowledge, this is the first functional characterization of the sequence diversity found in the ALF family.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Hemocytes/chemistry , Lipopolysaccharides/antagonists & inhibitors , Penaeidae/genetics , Amino Acid Sequence , Animals , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cell Wall/chemistry , Fungi/drug effects , Fungi/growth & development , Gene Expression , Genetic Variation , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Hemocytes/immunology , Hemocytes/metabolism , Microbial Sensitivity Tests , Molecular Sequence Data , Penaeidae/immunology , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Sequence Alignment , Sequence Homology, Amino Acid
13.
Mol Immunol ; 51(3-4): 363-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22525007

ABSTRACT

ß-1,3-Glucan binding proteins (ßGBPs) are soluble pattern recognition proteins/receptors that bind to ß-1,3-glucans from fungi cell walls. In crustaceans, ßGBPs are abundant plasmatic proteins produced by the hepatopancreas, and have been proved to play multiple biological functions. Here, we purified and characterized novel members of the ßGBP family from the hemolymph of two Brazilian shrimps, Farfantepenaeus paulensis (FpßGBP) and Litopenaeus schmitti (LsßGBP). As observed for other crustacean species, FpßGBP and LsßGBP are monomeric proteins (∼100kDa) able to enhance the activation of the prophenoloxidase system, a potent antimicrobial defense conserved in arthropods. More interestingly, we provided here evidence for a novel biological activity for shrimp ßGBPs: the agglutination of fungal cells. Finally, we investigated the modulation of the ßGBP gene in F. paulensis shrimps experimentally infected with a cognate fungal pathogen, Fusarium solani. From our expression data, ßGBP gene is constitutively expressed in hepatopancreas and not modulated upon a non-lethal fungal infection. Herein, we have improved our knowledge about the ßGBP family by the characterization of a novel biological role for this multifunctional protein in shrimp.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Lectins/chemistry , Lectins/metabolism , Penaeidae/metabolism , beta-Glucans/metabolism , Agglutination/genetics , Agglutination/physiology , Animals , Brazil , Carrier Proteins/genetics , Catechol Oxidase/metabolism , Enzyme Precursors/metabolism , Female , Fusariosis/genetics , Fusariosis/metabolism , Fusariosis/microbiology , Fusarium/metabolism , Hemolymph/chemistry , Hemolymph/metabolism , Hepatopancreas/metabolism , Lectins/genetics , Male , Penaeidae/genetics , Penaeidae/microbiology , Protein Binding
14.
Fish Shellfish Immunol ; 31(6): 938-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21888978

ABSTRACT

In this study, we report on the isolation and characterization of an alpha2-macroglobulin (α2M) from the plasma of the pink shrimp Farfantepenaeus paulensis, its sub-cellular localization and transcriptional changes after infection by fungi. The molecular mass of the α2M was estimated at 389 kDa by gel filtration and 197 kDa by SDS-PAGE, under reducing conditions, suggesting that α2M from F. paulensis consists of two identical sub-units, covalently linked by disulphide bonds. The N-terminal amino acid sequence of the α2M from F. paulensis was very similar to those of other penaeid shrimps, crayfish and lobster (70-90% identity) and to a less extent with that of freshwater prawn (40% identity). A monoclonal antibody raised against the Marsupenaeus japonicus α2M made it possible to demonstrate that α2M of F. paulensis is stored in the vesicles of the shrimp granular hemocytes (through immunogold assay). Quantitative real-time PCR (qPCR) analysis showed that α2M mRNA transcripts significantly increased 24 h after an experimental infection with the shrimp pathogen Fusarium solani and it returned to the basal levels at 48 h post-injection. This is the first report on a α2M characterization in an Atlantic penaeid species and its expression profile upon a fungal infection.


Subject(s)
Fusarium/immunology , Gene Expression Regulation/immunology , Penaeidae/immunology , alpha-Macroglobulins/immunology , Animals , Base Sequence , Blotting, Western , Chromatography, Gel , Chromatography, Ion Exchange , DNA Primers/genetics , Electrophoresis, Polyacrylamide Gel , Fluorescent Antibody Technique, Indirect , Hemocytes/metabolism , Hemocytes/ultrastructure , Immunohistochemistry , Molecular Sequence Data , Penaeidae/microbiology , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology , Species Specificity , alpha-Macroglobulins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...