Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 137(8): 1024-1036, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33025012

ABSTRACT

During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.


Subject(s)
Lymphoid Progenitor Cells/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/embryology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcriptome
2.
Nat Commun ; 11(1): 4549, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32917889

ABSTRACT

Arterial macrophages have different developmental origins, but the association of macrophage ontogeny with their phenotypes and functions in adulthood is still unclear. Here, we combine macrophage fate-mapping analysis with single-cell RNA sequencing to establish their cellular identity during homeostasis, and in response to angiotensin-II (AngII)-induced arterial inflammation. Yolk sac erythro-myeloid progenitors (EMP) contribute substantially to adventitial macrophages and give rise to a defined cluster of resident immune cells with homeostatic functions that is stable in adult mice, but declines in numbers during ageing and is not replenished by bone marrow (BM)-derived macrophages. In response to AngII inflammation, increase in adventitial macrophages is driven by recruitment of BM monocytes, while EMP-derived macrophages proliferate locally and provide a distinct transcriptional response that is linked to tissue regeneration. Our findings thus contribute to the understanding of macrophage heterogeneity, and associate macrophage ontogeny with distinct functions in health and disease.


Subject(s)
Arteries/cytology , Arteritis/immunology , Cell Differentiation/physiology , Homeostasis/physiology , Macrophages/physiology , Aging/physiology , Angiotensin II/administration & dosage , Angiotensin II/immunology , Animals , Arteries/physiology , Bone Marrow/physiology , Bone Marrow Transplantation , Cell Lineage , Disease Models, Animal , Female , Hematopoietic Stem Cells/physiology , Humans , Male , Mice , Mice, Transgenic , RNA-Seq , Regeneration/physiology , Single-Cell Analysis , Transplantation Chimera
3.
Nat Immunol ; 17(1): 2-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26681456

ABSTRACT

The molecular and cellular mechanisms that underlie the many roles of macrophages in health and disease states in vivo remain poorly understood. The purpose of this Review is to present and discuss current knowledge on the developmental biology of macrophages, as it underlies the concept of a layered myeloid system composed of 'resident' macrophages that originate mainly from progenitor cells generated in the yolk sac and of 'passenger' or 'transitory' myeloid cells that originate and renew from bone marrow hematopoietic stem cells, and to provide a framework for investigating the functions of macrophages in vivo.


Subject(s)
Macrophages/cytology , Animals , Cell Differentiation , Cell Lineage , Humans
5.
Nat Immunol ; 15(10): 929-937, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25151491

ABSTRACT

The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.


Subject(s)
Intestinal Mucosa/immunology , Intestines/immunology , Macrophages/immunology , Monocytes/immunology , Animals , Animals, Newborn , Antigens, Differentiation/genetics , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , Antigens, Ly/immunology , Antigens, Ly/metabolism , Bone Marrow Transplantation , CD11b Antigen/genetics , CD11b Antigen/immunology , CD11b Antigen/metabolism , CX3C Chemokine Receptor 1 , Cell Differentiation/immunology , Cell Proliferation , Flow Cytometry , Gene Expression/immunology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestines/cytology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological , Monocytes/metabolism , Parabiosis , Receptors, CCR2/genetics , Receptors, CCR2/immunology , Receptors, CCR2/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
6.
Cell Stem Cell ; 13(5): 535-48, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24054998

ABSTRACT

In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Female , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Hematopoietic Stem Cells/metabolism , Lymphocytes/cytology , Lymphocytes/metabolism , Male , Mice , Myeloid Cells/cytology , Myeloid Cells/metabolism , Polymerase Chain Reaction
7.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23806618

ABSTRACT

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Subject(s)
Ciliary Motility Disorders/genetics , Craniofacial Abnormalities/genetics , Fibroblast Growth Factor 8/genetics , Intracellular Signaling Peptides and Proteins/genetics , Orofaciodigital Syndromes/genetics , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/pathology , Cell Movement/physiology , Ciliary Motility Disorders/pathology , Craniofacial Abnormalities/pathology , Cytoskeletal Proteins , Disease Models, Animal , Fibroblast Growth Factor 8/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Maxilla/abnormalities , Mice , Mice, Mutant Strains , Neural Crest/abnormalities , Orofaciodigital Syndromes/pathology , Palate/abnormalities , Phenotype , Zinc Finger Protein GLI1
8.
Nat Neurosci ; 16(3): 273-80, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23334579

ABSTRACT

Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit(+) erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. These precursors developed into CD45(+) c-kit(lo) CX(3)CR1(-) immature (A1) cells and matured into CD45(+) c-kit(-) CX(3)CR1(+) (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia.


Subject(s)
Cell Differentiation/physiology , Cell Lineage/physiology , Interferon Regulatory Factors/metabolism , Microglia/cytology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Kruppel-Like Factor 4 , Mice , Microglia/metabolism , Proto-Oncogene Proteins c-kit/metabolism
9.
J Biol Chem ; 286(42): 36841-51, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21832056

ABSTRACT

Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.


Subject(s)
Angiopoietins/metabolism , Endothelial Cells/metabolism , Intercellular Junctions/metabolism , Neovascularization, Pathologic/embryology , Pericytes/metabolism , Retina/embryology , Retinal Neovascularization/embryology , Angiopoietin-Like Protein 4 , Angiopoietins/genetics , Animals , Capillary Permeability/genetics , Endothelial Cells/pathology , Hypoxia/chemically induced , Hypoxia/embryology , Hypoxia/genetics , Hypoxia/pathology , Intercellular Junctions/genetics , Intercellular Junctions/pathology , Mice , Mice, Mutant Strains , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Oxygen/toxicity , Pericytes/pathology , Retina/pathology , Retinal Neovascularization/chemically induced , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...