Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2709: 3-29, 2023.
Article in English | MEDLINE | ID: mdl-37572270

ABSTRACT

Molecular dynamics (MD) simulations can be used to investigate the stability and conformational characteristics of RNA nanostructures. However, MD simulations of an RNA nanostructure is computationally expensive due to the size of nanostructure and the number of atoms. Alternatively, MD simulations of RNA motifs can be used to estimate the conformational stability of constructed RNA nanostructure due to their small sizes. In this chapter, we introduce the preparation and MD simulations of two RNA kissing loop (KL) motifs, a linear KL complex and a bent KL complex, and an RNA nanoring. The initial solvated system and topology files of each system will be prepared by two major force fields, AMBER and CHARMM force fields. MD simulations will be performed by NAMD simulation package, which can accept both force fields. In addition, we will introduce the use of the AMBER cpptraj program and visual molecular dynamics (VMD) for data analysis. We will also discuss how MD simulations of two KL motifs can be used to estimate the conformation and stability of RNA nanoring as well as to explain the vibrational characteristics of RNA nanoring.

2.
Nanomedicine (Lond) ; 18(9): 769-782, 2023 04.
Article in English | MEDLINE | ID: mdl-37345552

ABSTRACT

Silver nanoparticles (AgNPs) are increasingly considered for biomedical applications as drug-delivery carriers, imaging probes and antibacterial agents. Silver nanoclusters (AgNCs) represent another subclass of nanoscale silver. AgNCs are a promising tool for nanomedicine due to their small size, structural homogeneity, antibacterial activity and fluorescence, which arises from their molecule-like electron configurations. The template-assisted synthesis of AgNCs relies on organic molecules that act as polydentate ligands. In particular, single-stranded nucleic acids reproducibly scaffold AgNCs to provide fluorescent, biocompatible materials that are incorporable in other formulations. This mini review outlines the design and characterization of AgNPs and DNA-templated AgNCs, discusses factors that affect their physicochemical and biological properties, and highlights applications of these materials as antibacterial agents and biosensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nucleic Acids , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biosensing Techniques/methods , Drug Carriers , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL