Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Heart Rhythm ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670249

ABSTRACT

BACKGROUND: Voltage mapping could identify the conducting channels potentially responsible for ventricular tachycardia (VT). Standard thresholds (0.5-1.5 mV) were established using bipolar catheters. No thresholds have been analyzed with high-density mapping catheters. In addition, channels identified by cardiac magnetic resonance (CMR) has been proven to be related with VT. OBJECTIVE: The purpose of this study was to analyze the diagnostic yield of a personalized voltage map using CMR to guide the adjustment of voltage thresholds. METHODS: All consecutive patients with scar-related VT undergoing ablation after CMR (from October 2018 to December 2020) were included. First, personalized CMR-guided voltage thresholds were defined systematically according to the distribution of the scar and channels. Second, to validate these new thresholds, a comparison with standard thresholds (0.5-1.5 mV) was performed. Tissue characteristics of areas identified as deceleration zones (DZs) were recorded for each pair of thresholds. In addition, the relation of VT circuits with voltage channels was analyzed for both maps. RESULTS: Thirty-two patients were included [mean age 66.6 ± 11.2 years; 25 (78.1%) ischemic cardiomyopathy]. Overall, 52 DZs were observed: 44.2% were identified as border zone tissue with standard cutoffs vs 75.0% using personalized voltage thresholds (P = .003). Of the 31 VT isthmuses detected, only 35.5% correlated with a voltage channel with standard thresholds vs 74.2% using adjusted thresholds (P = .005). Adjusted cutoff bipolar voltages that better matched CMR images were 0.51 ± 0.32 and 1.79 ± 0.71 mV with high interindividual variability (from 0.14-1.68 to 0.7-3.21 mV). CONCLUSION: Personalized voltage CMR-guided personalized voltage maps enable a better identification of the substrate with a higher correlation with both DZs and VT isthmuses than do conventional voltage maps using fixed thresholds.

2.
Liver Int ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591767

ABSTRACT

BACKGROUND: The optimal cardiovascular assessment of liver transplant (LT) candidates is unclear. We aimed to evaluate the performance of CT-based coronary tests (coronary artery calcium score [CACS] and coronary CT angiography [CCTA]) and a modification of the CAD-LT score (mCAD-LT, excluding family history of CAD) to diagnose significant coronary artery disease (CAD) before LT and predict the incidence of post-LT cardiovascular events (CVE). METHODS: We retrospectively analysed a single-centre cohort of LT candidates who underwent non-invasive tests; invasive coronary angiography (ICA) was performed depending on the results of non-invasive tests. mCAD-LT was calculated in all patients. RESULTS: Six-hundred-and-thirty-four LT candidates were assessed and 351 of them underwent LT. CACS, CCTA and ICA were performed in 245, 123 and 120 LT candidates, respectively. Significant CAD was found in 30% of patients undergoing ICA. The AUROCs of mCAD-LT (.722) and CCTA (.654) were significantly higher than that of CACS (.502) to predict the presence of significant CAD. Specificity of the tests ranged between 31% for CCTA and 53% for CACS. Among patients who underwent LT, CACS ≥ 400 and mCAD-LT were independently associated with the incidence of CVE; in patients who underwent CCTA before LT, significant CAD at CCTA also predicted post-LT CVE. CONCLUSION: In this cohort, mCAD-LT score and CT-based tests detect the presence of significant CAD in LT candidates, although they tend to overestimate it. Both mCAD-LT score and CT-based tests classify LT recipients according to their risk of post-LT CVE and can be used to improve post-LT risk mitigation.

3.
Europace ; 26(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38262674

ABSTRACT

AIMS: Non-invasive myocardial scar characterization with cardiac magnetic resonance (CMR) has been shown to accurately identify conduction channels and can be an important aid for ventricular tachycardia (VT) ablation. A new mapping method based on targeting deceleration zones (DZs) has become one of the most commonly used strategies for VT ablation procedures. The aim of the study was to analyse the capability of CMR to identify DZs and to find predictors of arrhythmogenicity in CMR channels. METHODS AND RESULTS: Forty-four consecutive patients with structural heart disease and VT undergoing ablation after CMR at a single centre (October 2018 to July 2021) were included (mean age, 64.8 ± 11.6 years; 95.5% male; 70.5% with ischaemic heart disease; a mean ejection fraction of 32.3 ± 7.8%). The characteristics of CMR channels were analysed, and correlations with DZs detected during isochronal late activation mapping in both baseline maps and remaps were determined. Overall, 109 automatically detected CMR channels were analysed (2.48 ± 1.15 per patient; length, 57.91 ± 63.07 mm; conducting channel mass, 2.06 ± 2.67 g; protectedness, 21.44 ± 25.39 mm). Overall, 76.1% of CMR channels were associated with a DZ. A univariate analysis showed that channels associated with DZs were longer [67.81 ± 68.45 vs. 26.31 ± 21.25 mm, odds ratio (OR) 1.03, P = 0.010], with a higher border zone (BZ) mass (2.41 ± 2.91 vs. 0.87 ± 0.86 g, OR 2.46, P = 0.011) and greater protectedness (24.97 ± 27.72 vs. 10.19 ± 9.52 mm, OR 1.08, P = 0.021). CONCLUSION: Non-invasive detection of targets for VT ablation is possible with CMR. Deceleration zones found during electroanatomical mapping accurately correlate with CMR channels, especially those with increased length, BZ mass, and protectedness.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Male , Middle Aged , Aged , Female , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Magnetic Resonance Imaging/methods , Myocardium/pathology , Heart Rate/physiology , Arrhythmias, Cardiac , Cicatrix/pathology , Catheter Ablation/methods
4.
Medicina (Kaunas) ; 60(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256411

ABSTRACT

Background and Objectives: Left atrial (LA) remodelling and dilatation predicts atrial fibrillation (AF) recurrences after catheter ablation. However, whether right atrial (RA) remodelling and dilatation predicts AF recurrences after ablation has not been fully evaluated. Materials and Methods: This is an observational study of 85 consecutive patients (aged 57 ± 9 years; 70 [82%] men) who underwent cardiac magnetic resonance before first catheter ablation for AF (40 [47.1%] persistent AF). Four-chamber cine-sequence was selected to measure LA and RA area, and ventricular end-systolic image phase to obtain atrial 3D volumes. The effect of different variables on event-free survival was investigated using the Cox proportional hazards model. Results: In patients with persistent AF, combined LA and RA area indexed to body surface area (AILA + RA) predicted AF recurrences (HR = 1.08, 95% CI 1.00-1.17, p = 0.048). An AILA + RA cut-off value of 26.7 cm2/m2 had 72% sensitivity and 73% specificity for predicting recurrences in patients with persistent AF. In this group, 65% of patients with AILA + RA > 26.7 cm2/m2 experienced AF recurrence within 2 years of follow-up (median follow-up 11 months), compared to 25% of patients with AILA + RA ≤ 26.7 cm2/m2 (HR 4.28, 95% CI 1.50-12.22; p = 0.007). Indices of LA and RA dilatation did not predict AF recurrences in patients with paroxysmal AF. Atrial 3D volumes did not predict AF recurrences after ablation. Conclusions: In this pilot study, the simple measurement of AILA + RA may predict recurrences after ablation of persistent AF, and may outperform measurements of atrial volumes. In paroxysmal AF, atrial dilatation did not predict recurrences. Further studies on the role of RA and LA remodelling are needed.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Male , Humans , Female , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Pilot Projects , Heart Atria/diagnostic imaging , Heart Ventricles
5.
Eur Heart J Cardiovasc Imaging ; 25(2): 188-198, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37819047

ABSTRACT

AIMS: Conducting channels (CCs) detected by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) are related to ventricular tachycardia (VT). The aim of this work was to study the ability of post-ablation LGE-CMR to evaluate ablation lesions. METHODS AND RESULTS: This is a prospective study of consecutive patients referred for a scar-related VT ablation. LGE-CMR was performed 6-12 months prior to ablation and 3-6 months after ablation. Scar characteristics of pre- and post-ablation LGE-CMR were compared. During the study period (March 2019-April 2021), 61 consecutive patients underwent scar-related VT ablation after LGE-CMR. Overall, 12 patients were excluded (4 had poor-quality LGE-CMR, 2 died before post-ablation LGE-CMR, and 6 underwent post-ablation LGE-CMR 12 months after ablation). Finally, 49 patients (age: 65.5 ± 9.8 years, 97.9% male, left ventricular ejection fraction: 34.8 ± 10.4%, 87.7% ischaemic cardiomyopathy) were included. Post-ablation LGE-CMR showed a decrease in the number (3.34 ± 1.03 vs. 1.6 ± 0.2; P < 0.0001) and mass (8.45 ± 1.3 vs. 3.5 ± 0.6 g; P < 0.001) of CCs. Arrhythmogenic CCs disappeared in 74.4% of patients. Dark core was detected in 75.5% of patients, and its presence was not related to CC reduction (52.2 ± 7.4% vs. 40.8 ± 10.6%, P = 0.57). VT recurrence after one year follow-up was 16.3%. The presence of two or more channels in the post-ablation LGE-CMR was a predictor of VT recurrence (31.82% vs. 0%, P = 0.0038) with a sensibility of 100% and specificity of 61% (area under the curve 0.82). In the same line, a reduction of CCs < 55% had sensibility of 100% and specificity of 61% (area under the curve 0.83) to predict VT recurrence. CONCLUSION: Post-ablation LGE-CMR is feasible, and a reduction in the number of CCs is related with lower risk of VT recurrence. The dark core was not present in all patients. A decrease in VT substrate was also observed in patients without a dark core area in the post-ablation LGE-CMR.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Humans , Male , Middle Aged , Aged , Female , Myocardium/pathology , Contrast Media , Magnetic Resonance Imaging, Cine/methods , Cicatrix/pathology , Prospective Studies , Gadolinium , Magnetic Resonance Imaging/methods , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/surgery , Tachycardia, Ventricular/pathology , Magnetic Resonance Spectroscopy
6.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903106

ABSTRACT

Carbon nanotubes (CNTs) are nanometer-sized structures that can be used to reinforce cement matrices. The extent to which the mechanical properties are improved depends on the interfacial characteristics of the resulting materials, that is, on the interactions established between the CNTs and the cement. The experimental characterization of these interfaces is still impeded by technical limitations. The use of simulation methods has a great potential to give information about systems lacking experimental information. In this work, molecular dynamics (MD) and molecular mechanics (MM) were used in conjunction with finite element simulations to study the interfacial shear strength (ISS) of a structure formed by a pristine single-walled CNT (SWCNT) inserted in a tobermorite crystal. The results show that, for a constant SWCNT length, ISS values increase when the SWCNT radius increases, while for a constant SWCNT radius, shorter lengths enhance ISS values.

7.
Rev. esp. cardiol. (Ed. impr.) ; 76(3): 183-196, mar, 2023. tab, ilus
Article in Spanish | IBECS | ID: ibc-216568

ABSTRACT

La resonancia magnética se ha convertido en técnica de imagen de primera línea en muchas situaciones clínicas. El número de pacientes portadores de dispositivos cardiovasculares, como los dispositivos cardiovasculares electrónicos implantables, ha crecido de modo exponencial. Aunque se han descrito complicaciones y efectos adversos cuando estos pacientes se someten a exploraciones de resonancia magnética, la evidencia clínica actual respalda la seguridad de realizar estos estudios cuando se cumplen unas normas y recomendaciones dirigidas a minimizar los posibles riesgos. El Grupo de Trabajo de Cardiorresonancia Magnética y Cardiotomografía Computarizadas de la Sociedad Española de Cardiología (SEC-GT CRMTC), la Asociación del Ritmo Cardiaco de la Sociedad Española de Cardiología (SEC-Asociación del Ritmo Cardiaco de la Sociedad Española de Cardiología), la Sociedad Española de Radiología Médica (SERAM) y la Sociedad Española de Imagen Cardiotorácica (SEICAT) han elaborado el presente documento, que revisa la evidencia disponible en este campo y establece las recomendaciones necesarias para que los pacientes portadores de dispositivos cardiovasculares electrónicos implantables y otros dispositivos puedan acceder con seguridad a este instrumento diagnóstico (AU)


Magnetic resonance has become a first-line imaging modality in various clinical scenarios. The number of patients with different cardiovascular devices, including cardiac implantable electronic devices, has increased exponentially. Although there have been reports of risks associated with exposure to magnetic resonance in these patients, the clinical evidence now supports the safety of performing these studies under specific conditions and following recommendations to minimize possible risks. This document was written by the Working Group on Cardiac Magnetic Resonance Imaging and Cardiac Computed Tomography of the Spanish Society of Cardiology (SEC-GT CRMTC), the Heart Rhythm Association of the Spanish Society of Cardiology (SEC-Heart Rhythm Association), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Cardiothoracic Imaging (SEICAT). The document reviews the clinical evidence available in this field and establishes a series of recommendations so that patients with cardiovascular devices can safely access this diagnostic tool (AU)


Subject(s)
Humans , Defibrillators, Implantable/standards , Heart Diseases/diagnostic imaging , Magnetic Resonance Imaging , Patient Safety , Consensus
8.
Eur Heart J Cardiovasc Imaging ; 24(7): 930-937, 2023 06 21.
Article in English | MEDLINE | ID: mdl-36644919

ABSTRACT

AIMS: Being born small for gestational age (SGA, 10% of all births) is associated with increased risk of cardiovascular mortality in adulthood together with lower exercise tolerance, but mechanistic pathways are unclear. Central obesity is known to worsen cardiovascular outcomes, but it is uncertain how it affects the heart in adults born SGA. We aimed to assess whether central obesity makes young adults born SGA more susceptible to cardiac remodelling and dysfunction. METHODS AND RESULTS: A perinatal cohort from a tertiary university hospital in Spain of young adults (30-40 years) randomly selected, 80 born SGA (birth weight below 10th centile) and 75 with normal birth weight (controls) was recruited. We studied the associations between SGA and central obesity (measured via the hip-to-waist ratio and used as a continuous variable) and cardiac regional structure and function, assessed by cardiac magnetic resonance using statistical shape analysis. Both SGA and waist-to-hip were highly associated to cardiac shape (F = 3.94, P < 0.001; F = 5.18, P < 0.001 respectively) with a statistically significant interaction (F = 2.29, P = 0.02). While controls tend to increase left ventricular end-diastolic volumes, mass and stroke volume with increasing waist-to-hip ratio, young adults born SGA showed a unique response with inability to increase cardiac dimensions or mass resulting in reduced stroke volume and exercise capacity. CONCLUSION: SGA young adults show a unique cardiac adaptation to central obesity. These results support considering SGA as a risk factor that may benefit from preventive strategies to reduce cardiometabolic risk.


Subject(s)
Obesity, Abdominal , Ventricular Remodeling , Infant, Newborn , Pregnancy , Female , Humans , Young Adult , Birth Weight , Obesity, Abdominal/diagnostic imaging , Obesity, Abdominal/epidemiology , Gestational Age , Infant, Small for Gestational Age , Obesity
9.
Rev Esp Cardiol (Engl Ed) ; 76(3): 173-182, 2023 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-35809892

ABSTRACT

INTRODUCTION AND OBJECTIVES: Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR. METHODS: A 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation. RESULTS: The upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%. CONCLUSIONS: An IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Humans , Cicatrix/pathology , Cicatrix/surgery , Contrast Media , Heart Atria/pathology , Magnetic Resonance Imaging/methods , Atrial Fibrillation/surgery , Fibrosis , Catheter Ablation/methods , Gadolinium , Magnetic Resonance Spectroscopy
11.
Rev Esp Cardiol (Engl Ed) ; 76(3): 183-196, 2023 Mar.
Article in English, Spanish | MEDLINE | ID: mdl-36539182

ABSTRACT

Magnetic resonance has become a first-line imaging modality in various clinical scenarios. The number of patients with different cardiovascular devices, including cardiac implantable electronic devices, has increased exponentially. Although there have been reports of risks associated with exposure to magnetic resonance in these patients, the clinical evidence now supports the safety of performing these studies under specific conditions and following recommendations to minimize possible risks. This document was written by the Working Group on Cardiac Magnetic Resonance Imaging and Cardiac Computed Tomography of the Spanish Society of Cardiology (SEC-GT CRMTC), the Heart Rhythm Association of the Spanish Society of Cardiology (SEC-Heart Rhythm Association), the Spanish Society of Medical Radiology (SERAM), and the Spanish Society of Cardiothoracic Imaging (SEICAT). The document reviews the clinical evidence available in this field and establishes a series of recommendations so that patients with cardiovascular devices can safely access this diagnostic tool.


Subject(s)
Cardiology , Defibrillators, Implantable , Heart Diseases , Humans , Consensus , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
12.
Europace ; 25(2): 360-365, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36125227

ABSTRACT

AIMS: Electrical reconnection of pulmonary veins (PVs) is considered an important determinant of recurrent atrial fibrillation (AF) after pulmonary vein isolation (PVI). To date, AF recurrences almost automatically trigger invasive repeat procedures, required to assess PVI durability. With recent technical advances, it is becoming increasingly common to find all PVs isolated in those repeat procedures. Thus, as ablation of extra-PV targets has failed to show benefit in randomized trials, more and more often these highly invasive procedures are performed only to rule out PV reconnection. Here we aim to define the ability of late gadolinium enhancement (LGE)-magnetic resonance imaging (MRI) to rule out PV reconnection non-invasively. METHODS AND RESULTS: This study is based on a prospective registry in which all patients receive an LGE-MRI after AF ablation. Included were all patients that-after an initial PVI and post-ablation LGE-MRI-underwent an invasive repeat procedure, which served as a reference to determine the predictive value of non-invasive lesion assessment by LGE-MRI.: 152 patients and 304 PV pairs were analysed. LGE-MRI predicted electrical PV reconnection with high sensitivity (98.9%) but rather low specificity (55.6%). Of note, LGE lesions without discontinuation ruled out reconnection of the respective PV pair with a negative predictive value of 96.9%, and patients with complete LGE lesion sets encircling all PVs were highly unlikely to show any PV reconnection (negative predictive value: 94.4%). CONCLUSION: LGE-MRI has the potential to guide selection of appropriate candidates and planning of the ablation strategy for repeat procedures and may help to identify patients that will not benefit from a redo-procedure if no ablation of extra-PV targets is intended.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Contrast Media , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Gadolinium , Treatment Outcome , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Magnetic Resonance Imaging , Catheter Ablation/adverse effects , Catheter Ablation/methods , Recurrence
13.
Materials (Basel) ; 15(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431462

ABSTRACT

Over the last few years, the addition of small amounts of carbon nanotubes (CNTs) to construction materials has become of great interest, since it enhances some of the mechanical, electrical and thermal properties of the cement. In this sense, single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) can be incorporated into cement to achieve the above-mentioned improved features. Thus, the current study presents the results of the addition of SWCNTs and MWCNTs on the microstructure and the physical properties of the cement paste. Density was measured through He pycnometry and the mass change was studied by thermogravimetric analysis (TGA). The microstructure and the phases were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally, the electrical conductivity for different CNT concentrations was measured, and an exponential increase of the conductivity with concentration was observed. This last result opens the possibility for these materials to be used in a high variety of fields, such as space intelligent systems with novel electrical and electronic applications.

14.
Materials (Basel) ; 15(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363327

ABSTRACT

Concrete is well known for its compression resistance, making it suitable for any kind of construction. Several research studies show that the addition of carbon nanostructures to concrete allows for construction materials with both a higher resistance and durability, while having less porosity. Among the mentioned nanostructures are carbon nanotubes (CNTs), which consist of long cylindrical molecules with a nanoscale diameter. In this work, molecular dynamics (MD) simulations have been carried out, to study the effect of pristine or carboxyl functionalized CNTs inserted into a tobermorite crystal on the mechanical properties (elastic modulus and interfacial shear strength) of the resulting composites. The results show that the addition of the nanostructure to the tobermorite crystal increases the elastic modulus and the interfacial shear strength, observing a positive relation between the mechanical properties and the atomic interactions established between the tobermorite crystal and the CNT surface. In addition, functionalized CNTs present enhanced mechanical properties.

15.
J Am Heart Assoc ; 11(20): e026028, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36216438

ABSTRACT

Background Left atrial structural remodeling contributes to the arrhythmogenic substrate of atrial fibrillation (AF), but the role of the right atrium (RA) remains unknown. Our aims were to comprehensively characterize right atrial structural remodeling in AF and identify right atrial parameters predicting recurrences after ablation. Methods and Results A 3.0 T late gadolinium enhanced-cardiac magnetic resonance was obtained in 109 individuals (9 healthy volunteers, 100 patients with AF undergoing ablation). Right and left atrial volume, surface, and sphericity were quantified. Right atrial global and regional fibrosis burden was assessed with validated thresholds. Patients with AF were systematically followed after ablation for recurrences. Progressive right atrial dilation and an increase in sphericity were observed from healthy volunteers to patients with paroxysmal and persistent AF; fibrosis was similar among the groups. The correlation between parameters recapitulating right atrial remodeling was mild. Subsequently, remodeling in both atria was compared. The RA was larger than the left atrium (LA) in all groups. Fibrosis burden was higher in the LA than in the RA of patients with AF, whereas sphericity was higher in the LA of patients with persistent AF only. Fibrosis, volume, and surface of the RA and LA, but not sphericity, were strongly correlated. Tricuspid regurgitation predicted right atrial volume and shape, whereas diabetes was associated with right atrial fibrosis burden; sex and persistent AF also predicted right atrial volume. Fibrosis in the RA was mostly located in the inferior vena cava-RA junction. Only right atrial sphericity is significantly associated with AF recurrences after ablation (hazard ratio, 1.12 [95% CI, 1.01-1.25]). Conclusions AF progression associates with right atrial remodeling in parallel with the LA. Right atrial sphericity yields prognostic significance after ablation.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Catheter Ablation , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Atrial Fibrillation/pathology , Catheter Ablation/methods , Gadolinium , Heart Atria , Fibrosis , Magnetic Resonance Spectroscopy
16.
Pacing Clin Electrophysiol ; 45(1): 72-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34820857

ABSTRACT

AIMS: Neither the long-term development of ablation lesions nor the capability of late gadolinium enhancement (LGE)-MRI to detect ablation-induced fibrosis at late stages of scar formation have been defined. We sought to assess the development of atrial ablation lesions over time using LGE-MRI and invasive electroanatomical mapping (EAM). METHODS AND RESULTS: Ablation lesions and total atrial fibrosis were assessed in serial LGE-MRI scans 3 months and >12 months post pulmonary vein (PV) isolation. High-density EAM performed in subsequent repeat ablation procedures served as a reference. Serial LGE-MRI of 22 patients were analyzed retrospectively. The PV encircling ablation lines displayed an average LGE, indicative of ablation-induced fibrosis, of 91.7% ± 7.0% of the circumference at 3 months, but only 62.8% ± 25.0% at a median of 28 months post ablation (p < 0.0001). EAM performed in 18 patients undergoing a subsequent repeat procedure revealed that the consistent decrease in LGE over time was owed to a reduced detectability of ablation-induced fibrosis by LGE-MRI at time-points > 12 months post ablation. Accordingly, the agreement with EAM regarding detection of ablation-induced fibrosis and functional gaps was good for the LGE-MRI at 3 months (κ .74; p < .0001), but only weak for the LGE-MRI at 28 months post-ablation (κ .29; p < .0001). CONCLUSION: While non-invasive lesion assessment with LGE-MRI 3 months post ablation provides accurate guidance for future redo-procedures, detectability of atrial ablation lesions appears to decrease over time. Thus, it should be considered to perform LGE-MRI 3 months post-ablation rather than at later time-points > 12 months post ablation, like for example, prior to a planned redo-ablation procedure.


Subject(s)
Atrial Fibrillation/surgery , Cicatrix/diagnostic imaging , Magnetic Resonance Imaging/methods , Postoperative Complications/diagnostic imaging , Cardiac-Gated Imaging Techniques , Cicatrix/etiology , Contrast Media , Electrophysiologic Techniques, Cardiac , Female , Fibrosis/diagnostic imaging , Fibrosis/etiology , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Organometallic Compounds , Postoperative Complications/etiology , Pulmonary Veins/surgery , Recurrence , Registries , Retrospective Studies , Spain
17.
Europace ; 24(6): 938-947, 2022 07 15.
Article in English | MEDLINE | ID: mdl-34849726

ABSTRACT

AIMS: To non-invasively characterize, by means of late gadolinium enhancement cardiac magnetic resonance (LGE-CMR), scar differences, and potential variables associated with ventricular tachycardia (VT) occurrence in chronic post-myocardial infarction (MI) patients. METHODS AND RESULTS: A case-control study was designed through retrospective LGE-CMR data analysis of chronic post-MI patients (i) consecutively referred for VT substrate ablation after a first VT episode (n = 66) and (ii) from a control group (n = 84) with no arrhythmia evidence. The myocardium was characterized differentiating core, border zone (BZ), and BZ channels (BZCs) using the ADAS 3D post-processing imaging platform. Clinical and scar characteristics, including a novel parameter, the BZC mass, were compared between both groups. One hundred and fifty post-MI patients were included. Four multivariable Cox proportional hazards regression models were created for total scar mass, BZ mass, core mass, and BZC mass, adjusting them by age, sex, and left ventricular ejection fraction (LVEF). A cut-off of 5.15 g of BZC mass identified the cases with 92.4% sensitivity and 86.9% specificity [area under the ROC curve (AUC) 0.93 (0.89-0.97); P < 0.001], with a significant increase in the AUC compared to other scar parameters (P < 0.001 for all pairwise comparisons). Adding BZC mass to LVEF allowed to reclassify 33.3% of the cases and 39.3% of the controls [net reclassification improvement = 0.73 (0.71-0.74)]. CONCLUSIONS: The mass of BZC is the strongest independent variable associated with the occurrence of sustained monomorphic ventricular tachycardia in post-MI patients after adjustment for age, sex, and LVEF. Border zone channel mass measurement could permit a more accurate VT risk stratification than LVEF in chronic post-MI patients.


Subject(s)
Myocardial Infarction , Tachycardia, Ventricular , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/etiology , Case-Control Studies , Cicatrix , Contrast Media , Gadolinium , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology , Retrospective Studies , Stroke Volume , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/etiology , Ventricular Function, Left
18.
Nanomaterials (Basel) ; 11(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34835764

ABSTRACT

The main objective of this study is to create a rigorous computer model of carbon nanotube composites to predict their mechanical properties before they are manufactured and to reduce the number of physical tests. A detailed comparison between experimental and computational results of a cement-based composite is made to match data and find the most significant parameters. It is also shown how the properties of the nanotubes (Young's modulus, aspect ratio, quantity, directionality, clustering) and the cement (Young's modulus) affect the composite properties. This paper tries to focus on the problem of modeling carbon nanotube composites computationally, and further study proposals are given.

19.
Sci Rep ; 11(1): 18546, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535689

ABSTRACT

Myocardial tissue T1 constitutes a reliable indicator of several heart diseases related to extracellular changes (e.g. edema, fibrosis) as well as fat, iron and amyloid content. Magnetic resonance (MR) T1-mapping is typically achieved by pixel-wise exponential fitting of a series of inversion or saturation recovery measurements. Good anatomical alignment between these measurements is essential for accurate T1 estimation. Motion correction is recommended to improve alignment. However, in the case of inversion recovery sequences, this correction is compromised by the intrinsic contrast variation between frames. A model-based, non-rigid motion correction method for MOLLI series was implemented and validated on a large database of cardiac clinical cases (n = 186). The method relies on a dedicated similarity metric that accounts for the intensity changes caused by T1 magnetization relaxation. The results were compared to uncorrected series and to the standard motion correction included in the scanner. To automate the quantitative analysis of results, a custom data alignment metric was defined. Qualitative evaluation was performed on a subset of cases to confirm the validity of the new metric. Motion correction caused noticeable (i.e. > 5%) performance degradation in 12% of cases with the standard method, compared to 0.3% with the new dedicated method. The average alignment quality was 85% ± 9% with the default correction and 90% ± 7% with the new method. The results of the qualitative evaluation were found to correlate with the quantitative metric. In conclusion, a dedicated motion correction method for T1 mapping MOLLI series has been evaluated on a large database of clinical cardiac MR cases, confirming its increased robustness with respect to the standard method implemented in the scanner.


Subject(s)
Heart Diseases/diagnostic imaging , Heart/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged , Algorithms , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged
20.
JAMA Cardiol ; 6(11): 1308-1316, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34287644

ABSTRACT

Importance: Being born small for gestational age (SGA), approximately 10% of all births, is associated with increased risk of cardiovascular mortality in adulthood, but mechanistic pathways are unclear. Cardiac remodeling and dysfunction occur in fetuses SGA and children born SGA, but it is uncertain whether and how these changes persist into adulthood. Objective: To evaluate baseline cardiac function and structure and exercise capacity in young adults born SGA. Design, Setting, and Participants: This cohort study conducted from January 2015 to January 2018 assessed a perinatal cohort born at a tertiary university hospital in Spain between 1975 and 1995. Participants included 158 randomly selected young adults aged 20 to 40 years born SGA (birth weight below the 10th centile) or with intrauterine growth within standard reference ranges (controls). Participants provided their medical history, filled out questionnaires regarding smoking and physical activity habits, and underwent incremental cardiopulmonary exercise stress testing, cardiac magnetic resonance imaging, and a physical examination, with blood pressure, glucose level, and lipid profile data collected. Exposure: Being born SGA. Main Outcomes and Measures: Cardiac structure and function assessed by cardiac magnetic resonance imaging, including biventricular end-diastolic shape analysis. Exercise capacity assessed by incremental exercise stress testing. Results: This cohort study included 81 adults born SGA (median age at study, 34.4 years [IQR, 30.8-36.7 years]; 43 women [53%]) and 77 control participants (median age at study, 33.7 years [interquartile range (IQR), 31.0-37.1 years]; 33 women [43%]). All participants were of White race/ethnicity and underwent imaging, whereas 127 participants (80% of the cohort; 66 control participants and 61 adults born SGA) completed the exercise test. Cardiac shape analysis showed minor changes at rest in right ventricular geometry (DeLong test z, 2.2098; P = .02) with preserved cardiac function in individuals born SGA. However, compared with controls, adults born SGA had lower exercise capacity, with decreased maximal workload (mean [SD], 180 [62] W vs 214 [60] W; P = .006) and oxygen consumption (median, 26.0 mL/min/kg [IQR, 21.5-33.5 mL/min/kg vs 29.5 mL/min/kg [IQR, 24.0-36.0 mL/min/kg]; P = .02). Exercise capacity was significantly correlated with left ventricular mass (ρ = 0.7934; P < .001). Conclusions and Relevance: This cohort of young adults born SGA had markedly reduced exercise capacity. These results support further research to clarify the causes of impaired exercise capacity and the potential association with increased cardiovascular mortality among adults born SGA.


Subject(s)
Cardiovascular Diseases/physiopathology , Exercise Tolerance/physiology , Exercise/physiology , Infant, Small for Gestational Age/physiology , Adult , Cardiovascular Diseases/epidemiology , Female , Gestational Age , Humans , Incidence , Male , Spain/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...