Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 311(2): 394-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17451728

ABSTRACT

In a previous paper, we studied the adsorption of a polyelectrolyte, polyethyleneimine ion (PEI), onto Leacril in order to increase the amount of the reactive dye Remazol Brilliant Blue R (RBBR) taken up by these fibers. We observed that this polycation changes the fibers zeta potential sign at low concentration, ca. 0.03 g/L, and thus the RBBR adsorption onto Leacril is improved when implementing the PEI treatment. The aim of this work is to study the PEI effect related to the amount of dye adsorbed by Leacril. For this purpose, we present data on streaming potential, adsorption isotherms, and surface free energy component determination as a function of the PEI concentration used in the pretreatment, as well as a function of the RBBR concentration used in the dyeing solutions. Adsorption experimental results show that the amount of RBBR taken by the fibers increases with the PEI concentration used in the pretreatment, and this effect becomes significant at higher concentrations of RBBR solution. The zeta potential increases to positive values in the range of low concentrations of dye solution when Leacril fibers have been pretreated with the polyelectrolyte. From surface free energy component determinations it is worth noting that the electron-donor component, gamma(-), decreases with the RBBR concentration in the treatment. The results we have obtained suggest that the interaction between the amine group of the PEI previously adsorbed and the reactive beta-sulfato-ethysulfonyl group of the dye can be responsible for the improvement in dye uptake.

2.
J Colloid Interface Sci ; 265(2): 227-33, 2003 Sep 15.
Article in English | MEDLINE | ID: mdl-12962654

ABSTRACT

Data are presented on the adsorption of the colloidal dye Disperse Blue 3 onto polyester fabric (Dacron 54, Stile 777), the fabric being pretreated with different amounts of the surfactant potassium ethyl xanthogenate (PEX). This study has been made by means of both the evolution of the zeta potential of the fiber/dye interface and the behaviour of the surface free energy components of the above systems. The kinetics of adsorption of the process of dyeing, using 10(-4) M of PEX in the pretreatment of the fabric, shows that increasing temperature of adsorption decrease the amount of colloidal dye adsorbed onto the fabric. This fact shows that the principal mechanism involved in this adsorption process is physical in nature. The adsorption isotherms of the colloidal dye onto polyester pretreated with different amounts of PEX, shows that the adsorption of the dye is favored with the increase in the concentration of the surfactant used in the pretreatment. This fact shows that the pretreatment with PEX is a very interesting aspect of interest in textile industry. The zeta potential of the system fabric/surfactant shows that this parameter is negative (about -25 mV) for the untreated fiber and decreases in absolute value for increasing concentration of the surfactant on the fiber, the value of the zeta potential of the system being -5 mV for 10(-2) M of PEX. This behavior can be explained for the chemical reaction nucleophilic attack between the carboxyl groups of polyester, ionized at pH 8, and the thiocarbonyl group of the xanthogenate ion. On the other hand, the zeta potential of the system polyester pretreated with PEX/Disperse Blue 3 at increasing concentrations of the surfactant and the dye shows that this parameter increases its negative value strongly with increasing concentration of the surfactant used in the treatment. This can be explained for the hydrogen bonds between the hydroxy groups of the dye and the S- ions of the thiocarbonyl group of the surfactant preadsorbed onto the fiber.

3.
J Colloid Interface Sci ; 252(1): 42-9, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-16290760

ABSTRACT

An electrokinetic and thermodynamic analysis of the adsorption process of N-cetylpyridinium chloride on polyester fabric is described in the present work. The electrokinetic study was performed by means of electrophoretic mobility measurements of the polyester-surfactant system. The most significant result is the increase in electrokinetic potential, zeta, toward more positive values as the surfactant concentration in the dispersion medium is raised. Given the molecular structure of N-cetylpyridinium chloride (N-CP-Cl), which contains a pyridinium group, positively charged, it is feasible that such increase in |zeta| is due to the electrostatic attraction between the carboxyl groups of polyester, ionized at pH 8.5, and the pyridinium group of the surfactant. The uptake of N-CP-Cl by the fiber is experimentally determined at four temperatures: the strong increase in the amount of the surfactant incorporated onto the fiber as the initial concentration of N-CP-Cl is larger shows that the electrostatic attraction between the fiber and the surfactant is the main mechanism of the adsorption of the surfactant onto the fiber. The obtained data on the kinetics and thermodynamics of adsorption of N-cetylpyridinium chloride onto the polyester, standard free energy, enthalpy, and entropy related to the process of adsorption are in accordance with our hypothesis on the mechanisms of adsorption. From a different point of view, the efficient coverage of polyester by N-CP-Cl is also demonstrated by the changes experienced by the surface free energy of polyester upon treatment with N-CP-Cl.

4.
J Colloid Interface Sci ; 238(1): 33-36, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11350132

ABSTRACT

An electrokinetic and thermodynamic analysis of the dyeing process of polyamide 6.6 (nylon 6.6) by the dye Palatine chrome black (PCB) is described in the present work. The electrokinetic study was performed by means of electrophoretic mobility measurements on bare and dyed fiber. The most significant result is the increase in electrokinetic potential, zeta, toward more negative values as the dye concentration in the dispersion medium is raised. Given the molecular structure of PCB, which contains a sulfonate group per molecule, it is feasible that such increase in |zeta| is due to the adsorption of the negatively charged, dissociated dye entities. The uptake of PCB by the fiber is experimentally determined at two temperatures: the strong increase in the amount of dye incorporated into the fiber as the initial concentration of PCB is larger, and also the fact that higher temperatures favor the dyeing process is an indication of the existence of strong interactions between both interfaces. From a different point of view, the efficient coverage of Nylon by PCB is also demonstrated by the changes experienced by the surface free energy of Nylon upon treatment with PCB. Copyright 2001 Academic Press.

5.
J Colloid Interface Sci ; 235(2): 283-288, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11254304

ABSTRACT

Adsorption studies of a cationic dye, Rhodamine B, from an emulsion phase on Leacril fabric at different temperatures were conducted. The emulsion phase consisted of n-hexadecane emulsified by isopropyl alcohol (1 M) and stabilized by tannic acid. In the alcohol solution Rhodamine B was dissolved. The kinetics of its adsorption and desorption is discussed. The changes in Leacril surface free energy components in the dyeing process were also determined. The adsorption data show that the presence of an emulsion increases the dye adsorption at room temperature (293 K) and at 313 K, while at 333 K it is smaller than that from Rhodamine solution alone. However, Rhodamine desorbs more when adsorbed from the solution. Surface free energy components differ for the Leacril samples dyed at different temperatures, and the most hydrophobic surface was obtained for the samples dyed at 333 K, where the electron-donor component is the lowest one. In general, the work of water spreading is close to zero, except for the above sample for which it is relatively highly negative. Possible mechanisms of the dye adsorption are discussed. Copyright 2001 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...