Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(19): 3587-3600, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35262120

ABSTRACT

Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by their antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive and even multi-drug resistant strains, some bottlenecks to further development and clinical applications are still present, for instance, low antimicrobial activity, instability under physiological conditions, systemic toxicity and the potential for compromising the innate host defense immunity. Conjugation to molecules such as proteins, synthetic polymers, small molecules and nanoparticles are strategies under investigation to boost the therapeutic efficacy of AMPs. This review focuses on the design and application of AMPs' conjugates. In silico tools for creating new AMPs and AMPs' conjugates and their clinical development are also discussed. Furthermore, key future considerations regarding the major achievements and challenges of AMPs' conjugates in the antimicrobial resistance context are presented as a take-home message.


Subject(s)
Anti-Infective Agents , Nanoparticles , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Antimicrobial Peptides , Nanoparticles/chemistry
2.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268986

ABSTRACT

Composites of magnetite nanoparticles encapsulated with polymers attract interest for many applications, especially as theragnostic agents for magnetic hyperthermia, drug delivery, and magnetic resonance imaging. In this work, magnetite nanoparticles were synthesized by coprecipitation and encapsulated with different polymers (Eudragit S100, Pluronic F68, Maltodextrin, and surfactants) by nano spray drying technique, which can produce powders of nanoparticles from solutions or suspensions. Transmission and scanning electron microscopy images showed that the bare magnetite nanoparticles have 10.5 nm, and after encapsulation, the particles have approximately 1 µm, with size and shape depending on the material's composition. The values of magnetic saturation by SQUID magnetometry and mass residues by thermogravimetric analysis were used to characterize the magnetic content in the materials, related to their magnetite/polymer ratios. Zero-field-cooling and field-cooling (ZFC/FC) measurements showed how blocking temperatures of the powders of the composites are lower than that of bare magnetite, possibly due to lower magnetic coupling, being an interesting system to study magnetic interactions of nanoparticles. Furthermore, studies of cytotoxic effect, hydrodynamic size, and heating capacity for hyperthermia (according to the application of an alternate magnetic field) show that these composites could be applied as a theragnostic material for a non-invasive administration such as nasal.

SELECTION OF CITATIONS
SEARCH DETAIL
...