Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Invest ; 104(5): 102036, 2024 May.
Article in English | MEDLINE | ID: mdl-38408704

ABSTRACT

Arterioles are key determinants of the total peripheral vascular resistance, which, in turn, is a key determinant of arterial blood pressure. However, the amount of protein available from one isolated human arteriole may be less than 5 µg, making proteomic analysis challenging. In addition, obtaining human arterioles requires manual dissection of unfrozen clinical specimens. This limits its feasibility, especially for powerful multicenter clinical studies in which clinical specimens need to be shipped overnight to a research laboratory for arteriole isolation. We performed a study to address low-input, test overnight tissue storage and develop a reference human arteriolar proteomic profile. In tandem mass tag proteomics, use of a booster channel consisting of human induced pluripotent stem cell-derived endothelial and vascular smooth muscle cells (1:5 ratio) increased the number of proteins detected in a human arteriole segment with a false discovery rate of <0.01 from 1051 to more than 3000. The correlation coefficient of proteomic profile was similar between replicate arterioles isolated freshly, following cold storage, or before and after the cold storage (1-way analysis of variance; P = .60). We built a human arteriolar proteomic profile consisting of 3832 proteins based on the analysis of 12 arteriole samples from 3 subjects. Of 1945 blood pressure-relevant proteins that we curated, 476 (12.5%) were detected in the arteriolar proteome, which was a significant overrepresentation (χ2 test; P < .05). These findings demonstrate that proteomic analysis is feasible with arterioles isolated from human adipose tissue following cold overnight storage and provide a reference human arteriolar proteome profile highly valuable for studies of arteriole-related traits.


Subject(s)
Adipose Tissue , Proteomics , Humans , Arterioles/metabolism , Proteomics/methods , Adipose Tissue/metabolism , Adipose Tissue/blood supply , Proteome/metabolism , Proteome/analysis , Female , Male , Adult , Middle Aged
2.
Glycobiology ; 34(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38253038

ABSTRACT

O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 µg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.


Subject(s)
Placenta , Proteins , Humans , Female , Pregnancy , Placenta/metabolism , Proteins/metabolism , Phosphorylation , Acetylglucosamine/metabolism , Protein Processing, Post-Translational
3.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38045407

ABSTRACT

Background: HLA-DR-expressing fibroblast-like synoviocytes (FLS) are a prominent cell type in synovial tissue in chronic inflammatory forms of arthritis. We recently showed that peptides from several extracellular matrix (ECM) proteins, including fibronectin-1 (FN1), contained immunogenic CD4+ T cell epitopes in patients with postinfectious Lyme arthritis (LA). However, the role of FLS in presentation of these T cell epitopes remains uncertain. Methods: Primary LA FLS and primary murine FLS stimulated with interferon gamma (IFNγ), Borrelia burgdorferi, and/or B. burgdorferi peptidoglycan (PG) were assessed for properties associated with antigen presentation. HLA-DR-presented peptides from stimulated LA FLS were identified by immunopeptidomics analysis. OT-II T cells were cocultured with stimulated murine FLS in the presence of cognate ovalbumin antigen to determine the potential of FLS to act as inducible antigen presenting cells (APC). Results: FLS expressed HLA-DR molecules within inflamed synovial tissue and tendons from patients with post-infectious LA patients in situ. MHC class II and costimulatory molecules were expressed by FLS following in vitro stimulation with IFNγ and B. burgdorferi and presented both foreign and self MHC-II peptides, including T cell epitopes derived from two Lyme autoantigens fibronectin-1 (FN1) and endothelial cell growth factor (ECGF). Stimulated murine FLS induced proliferation of naïve OT-II CD4+ T cells, particularly when FLS were stimulated with both IFNγ and PG. Conclusions: MHC-II+ FLS are inducible APCs that can induce CD4+ T cell activation and can present Lyme autoantigens derived from ECM proteins, thereby amplifying tissue-localized autoimmune CD4+ T cell responses in LA.

4.
iScience ; 26(11): 108184, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026167

ABSTRACT

O-GlcNAcylation is a key post-translational modification, playing a vital role in cell signaling during development, especially in the brain. In this study, we investigated the role of O-GlcNAcylation in regulating the homeobox protein OTX2, which contributes to various brain disorders, such as combined pituitary hormone deficiency, retinopathy, and medulloblastoma. Our research demonstrated that, under normal physiological conditions, the proteasome plays a pivotal role in breaking down endogenous OTX2. However, when the levels of OTX2 rise, it forms oligomers and/or aggregates that require macroautophagy for clearance. Intriguingly, we demonstrated that O-GlcNAcylation enhances the solubility of OTX2, thereby limiting the formation of these aggregates. Additionally, we unveiled an interaction between OTX2 and the chaperone protein CCT5 at the O-GlcNAc sites, suggesting a potential collaborative role in preventing OTX2 aggregation. Finally, our study demonstrated that while OTX2 physiologically promotes cell proliferation, an O-GlcNAc-depleted OTX2 is detrimental to cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...