Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 140: 292-305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331509

ABSTRACT

Integrated CO2 capture and utilization (ICCU) technology requires dual functional materials (DFMs) to carry out the process in a single reaction system. The influence of the calcination atmosphere on efficiency of 4% Ru-8% Na2CO3-8% CaO/γ-Al2O3 DFM is studied. The adsorbent precursors are first co-impregnated onto alumina and calcined in air. Then, Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols: static air in muffle or under different mixtures (10% H2/N2, 50% H2/N2 and N2) streams. Samples are characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TEM, XPS, H2-TPD, H2-TPR, CO2-TPD and TPSR. The catalytic behavior is evaluated, in cycles of CO2 adsorption and hydrogenation to CH4, and temporal evolution of reactants and products concentrations is analyzed. The calcination atmosphere influences the physicochemical properties and, ultimately, activity of DFMs. Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity. DFM calcined under N2 flow (RuNaCa-N2) shows the highest CH4 production (449 µmol/g at 370°C), because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases, maximizing the specific surface area, the Ru-basic sites interface and the participation of different basic sites in the CO2 methanation reaction. Thus, the calcination in a N2 flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO2 adsorption and hydrogenation applications.


Subject(s)
Aluminum Oxide , Carbon Dioxide , Adsorption , Hydrogenation , Atmosphere , Ions
2.
Polymers (Basel) ; 16(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201807

ABSTRACT

This work addresses a novel bio-solvolysis process for the treatment of complex poly(ethylene terephthalate) (PET) waste using a biobased monoethylene glycol (BioMEG) as a depolymerization agent in order to achieve a more sustainable chemical recycling process. Five difficult-to-recycle PET waste streams, including multilayer trays, coloured bottles and postconsumer textiles, were selected for the study. After characterization and conditioning of the samples, an evaluation of the proposed bio-solvolysis process was carried out by monitoring the reaction over time to determine the degree of PET conversion (91.3-97.1%) and bis(2-hydroxyethyl) terephthalate (BHET) monomer yield (71.5-76.3%). A monomer purification process, using activated carbon (AC), was also developed to remove the colour and to reduce the metal content of the solid. By applying this purification strategy, the whiteness (L*) of the BHET greatly increased from around 60 to over 95 (L* = 100 for pure white) and the Zn content was significantly reduced from around 200 to 2 mg/kg. The chemical structure of the purified monomers was analyzed via infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC), and the composition of the samples was measured by proton nuclear magnetic resonance (1H-NMR), proving a high purity of the monomers with a BHET content up to 99.5% in mol.

3.
ACS Omega ; 4(12): 14699-14713, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552309

ABSTRACT

Cu/SAPO-34 catalysts are prepared using solid-state ion exchange (SSIE) and liquid ion exchange (LIE). SSIE is conducted by calcining a physical mixture of H-SAPO-34 zeolite and CuO nanoparticles at elevated temperatures (500-800 °C). The conventional LIE method is conducted by exchanging Na-SAPO-34 with Cu(COOCH3)2 aqueous solution with a final calcination step at 500 °C. Catalysts were fully characterized, focusing on Cu species identification. The NH3-SCR activity is evaluated for NO x removal. Cu/SAPO-34 catalysts synthesized by SSIE at 700 °C achieved an optimal reaction rate, which was correlated with a higher proportion of Cu2+ ions. The activation energies of Cu/SAPO-34 catalysts prepared by SSIE and LIE with varying copper loadings are 32-38 and 42-47 kJ mol-1, respectively. The SSIE catalysts achieve higher turnover frequency than LIE catalysts for a similar copper content, which decreases on increasing the copper loading. These results provide evidence that Cu ions exchanged into the Cu/SAPO-34 catalysts synthesized by SSIE present higher activity than those prepared by LIE for NO x removal by NH3-SCR.

SELECTION OF CITATIONS
SEARCH DETAIL
...