Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(11): e113704, 2014.
Article in English | MEDLINE | ID: mdl-25423178

ABSTRACT

Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR-124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.


Subject(s)
Cell Differentiation , Cytoskeletal Proteins/metabolism , Dendrites/physiology , MicroRNAs/metabolism , Neurons/cytology , RNA-Binding Proteins/metabolism , Cell Line , Humans , Protein Binding
2.
J Virol ; 84(15): 7603-12, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20504931

ABSTRACT

The influenza A virus genome consists of 8 negative-stranded RNA segments. NS1 is a nonstructural protein that participates in different steps of the virus infectious cycle, including transcription, replication, and morphogenesis, and acts as a virulence factor. Human Staufen1 (hStau1), a protein involved in the transport and regulated translation of cellular mRNAs, was previously identified as a NS1-interacting factor. To investigate the possible role of hStau1 in the influenza virus infection, we characterized the composition of hStau1-containing granules isolated from virus-infected cells. Viral NS1 protein and ribonucleoproteins (RNPs) were identified in these complexes by Western blotting, and viral mRNAs and viral RNAs (vRNAs) were detected by reverse transcription (RT)-PCR. Also, colocalization of hStau1 with NS1, nucleoprotein (NP), and PA in the cytosol of virus-infected cells was shown by immunofluorescence. To analyze the role of hStau1 in the infection, we downregulated its expression by gene silencing. Human HEK293T cells or A549 cells were silenced using either short hairpin RNAs (shRNAs) or small interfering RNAs (siRNAs) targeting four independent sites in the hStau1 mRNA. The yield of influenza virus was reduced 5 to 10 times in the various hStau1-silenced cells compared to that in control silenced cells. The expression levels of viral proteins and their nucleocytoplasmic localization were not affected upon hStau1 silencing, but virus particle production, as determined by purification of virions from supernatants, was reduced. These results indicate a role for hStau1 in late events of the influenza virus infection, possibly during virus morphogenesis.


Subject(s)
Cytoskeletal Proteins/metabolism , Host-Pathogen Interactions , Influenza A virus/physiology , Protein Interaction Mapping , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Virus Replication , Blotting, Western , Cell Line , Cytoskeletal Proteins/antagonists & inhibitors , Gene Silencing , Humans , Influenza A virus/growth & development , Protein Binding , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Binding Proteins/antagonists & inhibitors , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...