Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 47(5): 411-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24820225

ABSTRACT

Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 µs) and high frequency (100 Hz/200 µs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.


Subject(s)
Acetylcholine/pharmacology , Cardiovascular Agents/pharmacology , Hand/blood supply , Nitroprusside/pharmacology , Phenylephrine/pharmacology , Transcutaneous Electric Nerve Stimulation/methods , Adult , Analysis of Variance , Blood Glucose , Cholesterol/blood , Erythrocyte Count , Humans , Leukocyte Count , Lipoproteins, HDL/blood , Male , Triglycerides/blood , Urea/blood , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Veins/drug effects
2.
Braz. j. med. biol. res ; 47(5): 411-418, 02/05/2014. tab, graf
Article in English | LILACS | ID: lil-709437

ABSTRACT

Transcutaneous electrical nerve stimulation (TENS) is a type of therapy used primarily for analgesia, but also presents changes in the cardiovascular system responses; its effects are dependent upon application parameters. Alterations to the cardiovascular system suggest that TENS may modify venous vascular response. The objective of this study was to evaluate the effects of TENS at different frequencies (10 and 100 Hz) on venous vascular reactivity in healthy subjects. Twenty-nine healthy male volunteers were randomized into three groups: placebo (n=10), low-frequency TENS (10 Hz, n=9) and high-frequency TENS (100 Hz, n=10). TENS was applied for 30 min in the nervous plexus trajectory from the superior member (from cervical to dorsal region of the fist) at low (10 Hz/200 μs) and high frequency (100 Hz/200 μs) with its intensity adjusted below the motor threshold and intensified every 5 min, intending to avoid accommodation. Venous vascular reactivity in response to phenylephrine, acetylcholine (endothelium-dependent) and sodium nitroprusside (endothelium-independent) was assessed by the dorsal hand vein technique. The phenylephrine effective dose to achieve 70% vasoconstriction was reduced 53% (P<0.01) using low-frequency TENS (10 Hz), while in high-frequency stimulation (100 Hz), a 47% increased dose was needed (P<0.01). The endothelium-dependent (acetylcholine) and independent (sodium nitroprusside) responses were not modified by TENS, which modifies venous responsiveness, and increases the low-frequency sensitivity of α1-adrenergic receptors and shows high-frequency opposite effects. These changes represent an important vascular effect caused by TENS with implications for hemodynamics, inflammation and analgesia.


Subject(s)
Adult , Humans , Male , Acetylcholine/pharmacology , Cardiovascular Agents/pharmacology , Hand/blood supply , Nitroprusside/pharmacology , Phenylephrine/pharmacology , Transcutaneous Electric Nerve Stimulation/methods , Analysis of Variance , Blood Glucose , Cholesterol/blood , Erythrocyte Count , Leukocyte Count , Lipoproteins, HDL/blood , Triglycerides/blood , Urea/blood , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Veins/drug effects
3.
Braz J Biol ; 69(4): 1195-201, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19967193

ABSTRACT

BACKGROUND: Healing is a complex process that involves cellular and biochemical events. Several medicines have been used in order to shorten healing time and avoid aesthetic damage. OBJECTIVE: to verify the topical effect of ascorbic acid for the healing of rats' skin wounds through the number of macrophages, new vessels and fibroblast verifications in the experimental period; and analyse the thickness and the collagen fibre organization in the injured tissue. METHODS: Male Rattus norvegicus weighing 270 +/- 30 g were used. After thionembutal anesthesia, 15 mm transversal incisions were made in the animals' cervical backs. They were divided into two groups: Control Group (CG, n = 12) - skin wound cleaned with water and soap daily; Treated Group (TG, n = 12) - skin wound cleaned daily and treated with ascorbic acid cream (10%). Samples of skin were collected on the 3rd, 7th and 14th days. The sections were stained with hematoxylin-eosin and picrosirius red for morphologic analysis. The images were obtained and analysed by a Digital Analyser System. RESULTS: The ascorbic acid acted on every stage of the healing process. It reduced the number of macrophages, increased the proliferation of fibroblasts and new vessels, and stimulated the synthesis of thicker and more organized collagen fibres in the wounds when compared to CG. CONCLUSION: Ascorbic acid was shown to have anti-inflammatory and healing effects, guaranteeing a suiTable environment and conditions for faster skin repair.


Subject(s)
Antioxidants/therapeutic use , Ascorbic Acid/therapeutic use , Wound Healing/drug effects , Animals , Collagen/drug effects , Collagen/physiology , Fibroblasts/drug effects , Fibroblasts/physiology , Macrophages/drug effects , Macrophages/physiology , Male , Rats , Rats, Wistar , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...