Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 69(3): 511-7, 2014.
Article in English | MEDLINE | ID: mdl-24552721

ABSTRACT

Molecular biology techniques provide valuable insights in the investigation of microbial dynamics and evolution. Denaturing gradient gel electrophoresis (DGGE) analysis is one of the most popular methods which have been used in bioprocess assessment. Most of the anaerobic digestion models consider several microbial populations as state variables. However, the difficulty of measuring individual species concentrations may cause inaccurate model predictions. The integration of microbial data and ecosystem modelling is currently a challenging issue for improved system control. A novel procedure that combines common experimental measurements, DGGE, and image analysis is presented in this study in order to provide a preliminary estimation of the actual concentration of the dominant bacterial ribotypes in a bioreactor, for further use as a variable in mathematical modelling of the bioprocess. This approach was applied during the start-up of a continuous anaerobic bioreactor for hydrogen production. The experimental concentration data were used for determining the kinetic parameters of each species, by using a multi-species chemostat-model. The model was able to reproduce the global trend of substrate and biomass concentrations during the reactor start-up, and predicted in an acceptable way the evolution of each ribotype concentration, depicting properly specific ribotype selection and extinction.


Subject(s)
Bioreactors/microbiology , Denaturing Gradient Gel Electrophoresis , Models, Biological , Ribotyping , Hydrogen/metabolism , Microbial Consortia
2.
Bioresour Technol ; 100(6): 1951-6, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19036578

ABSTRACT

Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5m/s and fed with a gelatine-starch-ethanol mixture. A significant fraction of acidogenic biomass developed during reactor operation, which fully determined the sludge rheology, and influenced the particle size distribution. As a result, flux levels of only 6.5l/m(2)h were achieved, at a liquid superficial velocity of 1.5m/s. Even though the soluble microbial products levels in the AMBR were as high as 14g COD/l, the observed hydraulic flux was not limited by irreversible pore fouling, but by reversible cake layer formation. Propionate oxidation was the limiting step for the applied organic loading rate. The assessed specific methanogenic activity (SMA) with propionate as substrate was, however, similar to the values found by others during thermophilic treatment of non or partially acidified substrates in granular sludge bed reactors, indicating an appropriate level of the propionate oxidation capacity.


Subject(s)
Acids/chemistry , Anaerobiosis , Biomass , Bioreactors , Industrial Waste , Waste Management , Centrifugation , In Situ Hybridization, Fluorescence , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...