Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Neurol Int ; 15(4): 1403-1410, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38132969

ABSTRACT

Neuromonitoring is a critical tool for emergency rooms and intensive care units to promptly identify and treat brain injuries. The case report of a patient with status epilepticus necessitating orotracheal intubation and intravenous lorazepam administration is presented. A pattern of epileptiform activity was detected in the left temporal region, and intravenous Acyclovir was administered based on the diagnostic hypothesis of herpetic meningoencephalitis. The neurointensivist opted for multimodal non-invasive bedside neuromonitoring due to the complexity of the patient's condition. A Brain4care (B4C) non-invasive intracranial compliance monitor was utilized alongside the assessment of an optic nerve sheath diameter (ONSD) and transcranial Doppler (TCD). Based on the collected data, a diagnosis of intracranial hypertension (ICH) was made and a treatment plan was developed. After the neurosurgery team's evaluation, a stereotaxic biopsy of the temporal lesion revealed a grade 2 diffuse astrocytoma, and an urgent total resection was performed. Research suggests that monitoring patients in a dedicated neurologic intensive care unit (Neuro ICU) can lead to improved outcomes and shorter hospital stays. In addition to being useful for patients with a primary brain injury, neuromonitoring may also be advantageous for those at risk of cerebral hemodynamic impairment. Lastly, it is essential to note that neuromonitoring technologies are non-invasive, less expensive, safe, and bedside-accessible approaches with significant diagnostic and monitoring potential for patients at risk of brain abnormalities. Multimodal neuromonitoring is a vital tool in critical care units for the identification and management of acute brain trauma as well as for patients at risk of cerebral hemodynamic impairment.

2.
Int J Mol Sci ; 23(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35008925

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, and enlargement of the diameter of hepatocytes (ballooning hepatocytes), with or without fibrosis. It affects 20% of patients with non-alcoholic fatty liver disease (NAFLD). Due to liver dysfunction and the numerous metabolic changes that commonly accompany the condition (obesity, insulin resistance, type 2 diabetes, and metabolic syndrome), the secretion of organokines is modified, which may contribute to the pathogenesis or progression of the disease. In this sense, this study aimed to perform a review of the role of organokines in NASH. Thus, by combining descriptors such as NASH, organokines, oxidative stress, inflammation, insulin resistance, and dyslipidemia, a search was carried out in the EMBASE, MEDLINE-PubMed, and Cochrane databases of articles published in the last ten years. Insulin resistance, inflammation and mitochondrial dysfunction, fructose, and intestinal microbiota were factors identified as participating in the genesis and progression of NASH. Changes in the pattern of organokines secretion (adipokines, myokines, hepatokines, and osteokines) directly or indirectly contribute to aggravating the condition or compromise homeostasis. Thus, further studies involving skeletal muscle, adipose, bone, and liver tissue as endocrine organs are essential to better understand the modulation of organokines involved in the pathogenesis of NASH to advance in the treatment of this disease.


Subject(s)
Adipokines/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Bone Morphogenetic Proteins/metabolism , Dyslipidemias , Fructose/metabolism , Gastrointestinal Microbiome , Humans , Inflammation , Insulin Resistance , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Osteocalcin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL