Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Physiol Renal Physiol ; 326(4): F644-F660, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38420674

ABSTRACT

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.


Subject(s)
Hypertension , Kidney Diseases , Podocytes , Humans , Mice , Animals , Aged , Podocytes/metabolism , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Phenotype , Kidney Diseases/metabolism , Obesity/metabolism , Hypertension/genetics , Hypertension/metabolism , Desoxycorticosterone , Acetates/metabolism , RNA, Messenger/metabolism
2.
Aging (Albany NY) ; 15(14): 6658-6689, 2023 07 23.
Article in English | MEDLINE | ID: mdl-37487005

ABSTRACT

The decrease in the podocyte's lifespan and health-span that typify healthy kidney aging cause a decrease in their normal structure, physiology and function. The ability to halt and even reverse these changes becomes clinically relevant when disease is superimposed on an aged kidney. RNA-sequencing of podocytes from middle-aged mice showed an inflammatory phenotype with increases in the NLRP3 inflammasome, signaling for IL2/Stat5, IL6 and TNF, interferon gamma response, allograft rejection and complement, consistent with inflammaging. Furthermore, injury-induced NLRP3 signaling in podocytes was further augmented in aged mice compared to young ones. The NLRP3 inflammasome (NLRP3, Caspase-1, IL1ß IL-18) was also increased in podocytes of middle-aged humans. Higher transcript expression for NLRP3 in human glomeruli was accompanied by reduced podocyte density and increased global glomerulosclerosis and glomerular volume. Pharmacological inhibition of NLRP3 with MCC950, or gene deletion, reduced podocyte senescence and the genes typifying aging in middle-aged mice, which was accompanied by an improved podocyte lifespan and health-span. Moreover, modeling the injury-dependent increase in NLRP3 signaling in human kidney organoids confirmed the anti-senescence effect of MC9950. Finally, NLRP3 also impacted liver aging. Together, these results suggest a critical role for the NLRP3 inflammasome in podocyte and liver aging.


Subject(s)
Podocytes , Humans , Animals , Mice , Middle Aged , Podocytes/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Glomerulus/metabolism , Aging
3.
Front Cell Dev Biol ; 10: 839109, 2022.
Article in English | MEDLINE | ID: mdl-35392173

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is a hallmark of diabetes-associated vascular complications. Epigenetic mechanisms emerged as one of the key pathways to regulate diabetes-associated complications. In the current study, we aimed to determine how abrupt changes in histone 3 lysine 4 tri-methylation (H3K4me3) upon hyperglycemia exposure reprograms endothelial cells to undergo EndMT. Through in vitro studies, we first establish that intermittent high-glucose exposure to EC most potently induced partial mesenchyme-like characteristics compared with transient or constant high-glucose-challenged endothelial cells. In addition, glomerular endothelial cells of BTBR Ob/Ob mice also exhibited mesenchymal-like characteristics. Intermittent hyperglycemia-dependent induction of partial mesenchyme-like phenotype of endothelial cells coincided with an increase in H3K4me3 level in both macro- and micro-vascular EC due to selective increase in MLL2 and WDR82 protein of SET1/COMPASS complex. Such an endothelial-specific heightened H3K4me3 level was also detected in intermittent high-glucose-exposed rat aorta and in kidney glomeruli of Ob/Ob mice. Elevated H3K4me3 enriched in the promoter regions of Notch ligands Jagged1 and Jagged2, thus causing abrupt expression of these ligands and concomitant activation of Notch signaling upon intermittent hyperglycemia challenge. Pharmacological inhibition and/or knockdown of MLL2 in cells in vitro or in tissues ex vivo normalized intermittent high-glucose-mediated increase in H3K4me3 level and further reversed Jagged1 and Jagged2 expression, Notch activation and further attenuated acquisition of partial mesenchyme-like phenotype of endothelial cells. In summary, the present study identifies a crucial role of histone methylation in hyperglycemia-dependent reprograming of endothelial cells to undergo mesenchymal transition and indicated that epigenetic pathways contribute to diabetes-associated vascular complications.

4.
J Mol Med (Berl) ; 99(6): 785-803, 2021 06.
Article in English | MEDLINE | ID: mdl-33763722

ABSTRACT

Chronic kidney disease (CKD) is a major public health concern and its prevalence and incidence are rising quickly. It is a non-communicable disease primarily caused by diabetes and/or hypertension and is associated with high morbidity and mortality. Despite decades of research efforts, the pathogenesis of CKD remains a puzzle with missing pieces. Understanding the cellular and molecular mechanisms that govern the loss of kidney function is crucial. Abrupt regulation of gene expression in kidney cells is apparent in CKD and shown to be responsible for disease onset and progression. Gene expression regulation extends beyond DNA sequence and involves epigenetic mechanisms including changes in DNA methylation and post-translational modifications of histones, driven by the activity of specific enzymes. Recent advances demonstrate the essential participation of epigenetics in kidney (patho)physiology, as its actions regulate both the integrity of cells but also triggers deleterious signaling pathways. Here, we review the known epigenetic processes regulating the complex filtration unit of the kidney, the glomeruli. The review will elaborate on novel insights into how epigenetics contributes to cell injury in the CKD setting majorly focusing on kidney glomerular cells: the glomerular endothelial cells, the mesangial cells, and the specialized and terminally differentiated podocyte cells.


Subject(s)
Disease Susceptibility , Epigenesis, Genetic , Gene Expression Regulation , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Animals , Biomarkers , DNA Methylation , Endothelial Cells/metabolism , Histones/metabolism , Humans , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Mesangial Cells/metabolism , Podocytes/metabolism , Protein Processing, Post-Translational
5.
Life Sci ; 270: 118997, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33453249

ABSTRACT

Advanced glycation end products (AGEs) play an important role in oxidative stress and inflammation, processes implicated in the development and progression of kidney dysfunction. In the present study, we investigated the participation of the pro-oxidant protein thioredoxin-interacting protein (TXNIP) and of epigenetic mechanisms on kidney tissue (in vivo, in non-diabetic rats) and on terminally differentiated glomerular podocytes (in vitro) chronically exposed to AGEs. AGEs induced total kidney and glomerular TXNIP expression and decreased H3K27me3 content. Concomitant treatment with the antioxidant N-acetyl-cysteine (NAC) reversed only the increased TXNIP expression. TXNIP expression positively correlated with proteinuria and negatively correlated with H3K27me3 content. In vitro studies in podocytes showed that 72 h exposure to AGEs decreased nephrin expression and increased Txnip, Nox4, Col4a1, and epithelial-to-mesenchymal transition (EMT) markers (Acta2, Snail1, and Tgfb1). Podocytes treatment with NAC reversed Nox4, Col4a1, Acta2, and Tgfb1 increased expression but did not abrogate the reduced expression of nephrin. MiR-29a expression was downregulated by AGEs in vivo, but not in vitro. In conclusion, treatment of non-diabetic rats with AGEs induced TXNIP expression and decreased the contents of the repressive epigenetic mark H3K27me3 and of miR-29a, potentially driving injury to glomerular filtration barrier and podocytes dysfunction.


Subject(s)
Cell Cycle Proteins/genetics , Diabetic Nephropathies/metabolism , Glycation End Products, Advanced/pharmacology , Animals , Antioxidants/metabolism , Cell Cycle Proteins/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/genetics , Epigenesis, Genetic/genetics , Epithelial Cells/metabolism , Gene Expression/genetics , Gene Expression Regulation/drug effects , Glycation End Products, Advanced/metabolism , Histones , Kidney/cytology , Kidney/metabolism , Kidney Glomerulus/metabolism , Male , Membrane Proteins , Oxidative Stress , Podocytes/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
6.
Expert Opin Drug Metab Toxicol ; 14(6): 613-624, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29842801

ABSTRACT

INTRODUCTION: Statins are used in the treatment of dyslipidemia promoting primary and secondary prevention against detrimental cardiovascular events. ATP-binding cassette (ABC) and solute carrier (SLC) membrane transporters transport statins across the cell membrane. Differences in drug transporter tissue expression and activity contribute to variability in statin pharmacokinetics (PK) and response. Areas covered: The purpose of this review is to discuss factors impacting transporter expression and the effect this has on statin efficacy and safety. Previous studies have demonstrated that genetic polymorphisms, drug-drug interactions (DDI), nuclear receptors, and microRNAs affect statin PK and pharmacodynamics. Expert opinion: Genetic variants of ABCG2 and SLCO1B1 transporters affect statin PK and, as a result, the intended lipid-lowering response. However, the effect size is small, limiting its applicability in clinical practice. Furthermore, genetic variants do not totally explain the observed intervariability in statin response. Thus, it is likely that transcriptional and post-transcriptional regulation of drug transporters are also highly involved. Further studies are required to understand the contribution of each of these new factors in statin disposition and toxicity.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Liver-Specific Organic Anion Transporter 1/genetics , Neoplasm Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Biological Transport , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Drug Interactions , Dyslipidemias/complications , Dyslipidemias/drug therapy , Genetic Variation , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Liver-Specific Organic Anion Transporter 1/metabolism , Neoplasm Proteins/metabolism , Polymorphism, Genetic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...