Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 1015307, 2022.
Article in English | MEDLINE | ID: mdl-36407617

ABSTRACT

Food production in sustainable agricultural systems is one of the main challenges of modern agriculture. Vegetable intercropping may be a strategy to mitigate greenhouse gas (GHG) emissions, replacing monoculture systems. The objective is to identify the main emissions sources and to estimate GHG emissions of intercropping and monoculture production of collard greens, New Zealand spinach and chicory. Four scenarios were evaluated: ICS - intercropping collard greens and spinach; MCS - monoculture collard greens and spinach; ICC - intercropping collard greens and chicory; MCC - monoculture collard greens and chicory. The boundaries' reach from "cradle-to-gate" and the calculation of GHG emissions were performed using IPCC methodology and specific factors (Tier 2). The total GHG emitted was standardized as CO2 equivalent (CO2eq). The GHG emissions in ICS and ICC scenarios were approximately 31% lower than in MCS and MCC scenarios. Carbon footprint in ICS (0.030 kg CO2eq kg-1 vegetables year-1) and ICC (0.033 kg CO2eq kg-1 vegetables year-1) scenarios were also lower than in MCS (0.082 kg CO2eq kg-1 vegetables year-1) and MCC (0.071 kg CO2eq kg-1 vegetables year-1) scenarios. Fertilizers, fuel (diesel) and irrigation were the main contributing sources for total GHG emitted and carbon footprint in all evaluated scenarios. The results suggest that intercropping systems may reduce GHG emissions associated with the production of vegetables evaluated as compared with monoculture.

2.
J Environ Manage ; 307: 114568, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35078062

ABSTRACT

Although the response of plants to nitrogen (N) in conventional systems has been extensively described in the literature, there is a lack of information available to refine the strategic N fertilisation program required in intercropping systems to match the nutrient supply with crop demands and reduce environmental impacts on greenhouse gas emissions. Therefore, this study aims to investigate the effect of N management on the growth, production, quality, greenhouse gas emissions (GHG) and carbon footprint of a beet-arugula intercropping system during two growing seasons (winter and summer). The efficiency of N fertilisation in each season was assessed by the supply of 20 N doses, varying the amounts applied at planting and as a side dressing (0-80, 0-120, 0-160, 0-200, 0-240, 20-80, 20-120, 20-160, 20-200, 20-240, 40-80, 40-120, 40-160, 40-200, 40-240, 60-80, 60-120,60-160, 60-200 and 60-240 kg N ha-1). GHG emissions and carbon footprint were calculated and converted to CO2 equivalent (CO2 eq) utilising IPCC methodology. The height, total and marketable productivities of beet plants were 33, 31 and 34% higher in winter than in summer, respectively. Arugula plants achieved the highest performance (height, fresh mass and yield) in summer. Considering the environmental impact on global warming/climate change caused by the use of N fertilisers, total GHG emissions may range from 1723.9 to 3369.8 kg CO2eq ha-1 cycle-1 according to the N dose applied. However, based on the carbon footprint, the application of 60-120 kg N ha-1 at planting and as side dressing was the best N dose, since it reduced the carbon footprint (equivalent to 0.134 g CO2eq kcal-1 vegetables) without compromising crop yield.


Subject(s)
Beta vulgaris , Greenhouse Gases , Agriculture , Carbon Footprint , Fertilization , Greenhouse Effect , Greenhouse Gases/analysis , Methane/analysis , Nitrogen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...