Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Environ Geochem Health ; 46(6): 202, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696051

ABSTRACT

Determining the origin and pathways of contaminants in the natural environment is key to informing any mitigation process. The mass magnetic susceptibility of soils allows a rapid method to measure the concentration of magnetic minerals, derived from anthropogenic activities such as mining or industrial processes, i.e., smelting metals (technogenic origin), or from the local bedrock (of geogenic origin). This is especially effective when combined with rapid geochemical analyses of soils. The use of multivariate analysis (MVA) elucidates complex multiple-component relationships between soil geochemistry and magnetic susceptibility. In the case of soil mining sites, X-ray fluorescence (XRF) spectroscopic data of soils contaminated by mine waste shows statistically significant relationships between magnetic susceptibility and some base metal species (e.g., Fe, Pb, Zn, etc.). Here, we show how qualitative and quantitative MVA methodologies can be used to assess soil contamination pathways using mass magnetic susceptibility and XRF spectra of soils near abandoned coal and W/Sn mines (NW Portugal). Principal component analysis (PCA) showed how the first two primary components (PC-1 + PC-2) explained 94% of the sample variability, grouped them according to their geochemistry and magnetic susceptibility in to geogenic and technogenic groups. Regression analyses showed a strong positive correlation (R2 > 0.95) between soil geochemistry and magnetic properties at the local scale. These parameters provided an insight into the multi-element variables that control magnetic susceptibility and indicated the possibility of efficient assessment of potentially contaminated sites through mass-specific soil magnetism.


Subject(s)
Environmental Monitoring , Soil Pollutants , Spectrometry, X-Ray Emission , Soil Pollutants/analysis , Spectrometry, X-Ray Emission/methods , Multivariate Analysis , Environmental Monitoring/methods , Mining , Portugal , Principal Component Analysis , Soil/chemistry , Tin/analysis , Magnetic Phenomena , Coal Mining , Coal
2.
Talanta ; 268(Pt 1): 125284, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37866307

ABSTRACT

Soybean is a legume with high technological functionality, commonly used by the food industry as an ingredient in different products. However, soybean is an allergenic food whose undeclared presence in processed foods may represent a public health risk. In this work, it was developed an efficient electrochemical immunosensor, targeting the soybean trypsin inhibitor (Gly m TI) allergen using commercial anti-Gly m TI IgG, aiming at detecting/quantifying minute amounts of soybean in different food formulations. For this purpose, model mixtures of different foods (sausages, cooked-hams, biscuits) were prepared to contain known amounts of soybean protein isolate (100,000-0.1 mg kg-1) and submitted to specific thermal treatments (autoclaving, oven-cooking, baking). The electrochemical immunosensor allowed quantifying down to 0.1 mg kg-1 of soybean in the three food matrices, raw and processed (0.0012 mg of Gly m TI/kg of matrix). Accordingly, the immunosensor is suitable for detecting traces of soybean in raw, processed, and complex foods, thus protecting 99 % of soybean-allergic patients.


Subject(s)
Biosensing Techniques , Glycine max , Humans , Allergens , Point-of-Care Systems , Immunoassay
3.
Nanomaterials (Basel) ; 13(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38063763

ABSTRACT

This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized, before and after functionalization, by Fourier-Transform Infrared Spectroscopy (FTIR), Brunner-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM) analyses. Antimicrobial activity was tested against planktonic Pseudomonas fluorescens. Planktonic bacteria were exposed to 100 mg/L, 200 mg/L and 400 mg/L of BDMDAC-coated microparticles for 240 min. This strategy promoted a complete bacteria reduction at 200 mg/L for Hap microparticles after 240 min. No release of biocide was detected through HPLC analyses during 2 weeks, suggesting that bacteria inactivation may be attributed to a contact killing mechanism.

4.
ACS Sens ; 8(8): 2898-2920, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37556357

ABSTRACT

Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e., molecularly imprinted polymer nanoparticles (MIP NPs, also commonly called nanoMIPs), opened new horizons in terms of practical applications, including in the field of sensors. Currently, hydrogels are very promising for applications in bioanalytical assays and sensors due to their high biocompatibility and possibility to tune chemical composition, size (microgels, nanogels, etc.), and format (nanostructures, MIP film, fibers, etc.) to prepare optimized analyte-responsive imprinted materials. This review aims to highlight the recent progress on the use of hydrogel MIP NPs for biosensing purposes over the past decade, mainly focusing on their incorporation on sensing devices for detection of a fundamental class of biomolecules, the peptides and proteins. The review begins by directing its focus on the ability of MIPs to replace biological antibodies in (bio)analytical assays and highlight their great potential to face the current demands of chemical sensing in several fields, such as disease diagnosis, food safety, environmental monitoring, among others. After that, we address the general advantages of nanosized MIPs over macro/micro-MIP materials, such as higher affinity toward target analytes and improved binding kinetics. Then, we provide a general overview on hydrogel properties and their great advantages for applications in the field of Sensors, followed by a brief description on current popular routes for synthesis of imprinted hydrogel nanospheres targeting large biomolecules, namely precipitation polymerization and solid-phase synthesis, along with fruitful combination with epitope imprinting as reliable approaches for developing optimized protein-imprinted materials. In the second part of the review, we have provided the state of the art on the application of MIP nanogels for screening macromolecules with sensors having different transduction modes (optical, electrochemical, thermal, etc.) and design formats for single use, reusable, continuous monitoring, and even multiple analyte detection in specialized laboratories or in situ using mobile technology. Finally, we explore aspects about the development of this technology and its applications and discuss areas of future growth.


Subject(s)
Nanospheres , Nanostructures , Polymers/chemistry , Nanogels , Hydrogels/chemistry
5.
ACS Omega ; 8(21): 18782-18798, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37273638

ABSTRACT

Waste, in particular, biowaste, can be a valuable source of novel carbon materials. Renewable carbon materials, such as biomass-derived carbons, have gained significant attention recently as potential electrode materials for various electrochemical devices, including batteries and supercapacitors. The importance of renewable carbon materials as electrodes can be attributed to their sustainability, low cost, high purity, high surface area, and tailored properties. Fish waste recovered from the fish processing industry can be used for energy applications and prioritizing the circular economy principles. Herein, a method is proposed to prepare a high surface area biocarbon from glycogen extracted from mussel cooking wastewater. The biocarbon materials were characterized using a Brunauer-Emmett-Teller surface area analyzer to determine the specific surface area and pore size and by scanning electron microscopy coupled with energy-dispersive X-ray analysis, Raman analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The electrochemical characterization was performed using a three-electrode system, utilizing a choline chloride-based deep eutectic solvent (DES) as an eco-friendly and sustainable electrolyte. Optimal time and temperature allowed the preparation of glycogen-based carbon materials, with a specific surface area of 1526 m2 g-1, a pore volume of 0.38 cm3 g-1, and an associated specific capacitance of 657 F g-1 at a current density of 1 A g-1, at 30 °C. The optimal material was scaled up to a two-electrode supercapacitor using a DES-based solid-state electrolyte (SSE@DES). This prototype delivered a maximum capacitance of 703 F g-1 at a 1 A g-1 of current density, showing 75% capacitance retention over 1000 cycles, delivering the highest energy density of 0.335 W h kg-1 and power density of 1341 W kg-1. Marine waste can be a sustainable source for producing nanoporous carbon materials to be incorporated as electrode materials in energy storage devices.

6.
Anal Chim Acta ; 1259: 341168, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37100473

ABSTRACT

A plasmonic nanostructure was constructed as a biorecognition element coupled to an optical sensing platform in sandwich format, targeting the hazelnut Cor a 14 allergen-encoding gene. The analytical performance of the genosensor presented a linear dynamic range between 100 amol L-1 and 1 nmol L-1, a limit of detection (LOD) < 19.9 amol L-1, and a sensitivity of 13.4 ± 0.6 m°. The genosensor was successfully hybridized with hazelnut PCR products, tested with model foods, and further validated by real-time PCR. It reached a LOD <0.001% (10 mg kg-1) of hazelnut in wheat material (corresponding to 1.6 mg kg-1 of protein) and a sensitivity of -17.2 ± 0.5 m° for a linear range of 0.001%-1%. Herein, a new genosensing approach is proposed as a highly sensitive and specific alternative tool with potential application in monitoring hazelnut as an allergenic food, protecting the health of sensitized/allergic individuals.


Subject(s)
Corylus , Food Hypersensitivity , Humans , Allergens/genetics , Corylus/genetics , Corylus/chemistry , Immunoglobulin E , Plant Proteins/genetics , Plant Proteins/analysis , Real-Time Polymerase Chain Reaction
7.
Materials (Basel) ; 16(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36984217

ABSTRACT

Carbon materials derived from marine waste have been drawing attention for supercapacitor applications. In this work, chitins from squid and prawn marine wastes were used as carbon precursors for further application as electrodes for energy storage devices. Chitins were obtained through a deproteinization method based on enzymatic hydrolysis as an alternative to chemical hydrolysis as commonly presented in the literature. The obtained porous carbons were characterized using a BET surface area analyzer to determine the specific surface area and pore size, as well as scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), to characterize their morphology, composition, and structure. The electrochemical characterization was performed using a glassy carbon (GC) electrode modified with marine waste-based porous carbons as the working electrode through cyclic voltammetry and galvanostatic charge/discharge using ethaline, a choline chloride-based deep eutectic solvent (DES), as an eco-friendly and sustainable electrolyte. Squid and prawn chitin-based carbons presented a surface area of 149.3 m2 g-1 and 85.0 m2 g-1, pore volume of 0.053 cm3 g-1 and 0.029 cm3 g-1, and an associated specific capacitance of 20 and 15 F g-1 at 1 A g-1, respectively. Preliminary studies were performed to understand the effect of -OH groups on the chitin-based carbon surface with DES as an electrolyte, as well as the effect of aqueous electrolytes (1 mol L-1 sulphuric acid (H2SO4) and 1 mol L-1 potassium hydroxide (KOH)) on the capacitance and retention of the half-cell set up. It is provided, for the first time, the use of chitin-based carbon materials obtained through a one-step carbonization process combined with an eco-friendly DES electrolyte for potential application in energy storage devices.

8.
Int J Biol Macromol ; 233: 123395, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36702225

ABSTRACT

The present study proposes two unique systems using free radical-induced grafting reactions to combine Ag, chitosan (CS) and gallic acid (GA) into a single particulate nanostructure. GA-grafted-CS (GA-g-CS) was used to reduce Ag+ to Ag0, and producing Ag-GA-g-CSNPs (hybrid NPs I). Also, GA was grafted into CS-AgNPs, to form GA-g-CS AgNPs (hybrid NPs II). Although there were previous attempts to graft GA into CS, this is first time to graft GA into CS-AgNPs. The study aimed to enhance biocompatibility, antibacterial and antioxidant properties of CS-AgNPs via grafted GA. Grafting GA into CS-AgNPs was confirmed by UV-Vis, DLS, DSC/TGA, XRD, EDX and FTIR. The morphology and size of NPs were studied by TEM and SEM. The decrease of ζ-potential from +50 mV in CS-Ag NPs to +33 and + 29 mV, in the presented 2 nanoforms hybrid NPs I and II, respectively, is an indication for the successful GA graft. Among all samples, hybrid NPs II showed lower toxicity, higher antioxidant and antibacterial activity. The obtained results revealed that grafting GA to CS-AgNPs, as a new method to combine Ag, CS and GA in a uniparticulate structure, is a unique process which may deserve a more future consideration.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Gallic Acid/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Chitosan/chemistry , Free Radicals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry
9.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500600

ABSTRACT

The possibility of generating organically modified hollow TiO2 microspheres via a simple sol-gel synthesis was demonstrated for the first time in this work. A mixture of titania precursors, including an organically modified precursor, was used to obtain methyl-modified hollow TiO2 microspheres selective for bilirubin by the molecular imprinting technique (Methyl-HTM-MIM). Methyl-HTM-MIM were prepared by a sol-gel method using titanium (IV) isopropoxide (TTIP), and methyltitanium triisopropoxide (MTTIP) as precursors. Two ratios of titania precursors were tested (1/6 and 1/30 molMTTIP/molTTIP). With the characterization results obtained by the SEM and ATR-FTIR techniques, it was possible to establish that only the 1/30 molMTTIP/molTTIP ratio allowed for the preparation of hollow spheres with a reasonably homogeneous methylated-TiO2 shell. It was possible to obtain a certain degree of organization of the hybrid network, which increased with calcination temperatures. By adjusting isothermal adsorption models, imprinting parameters were determined, indicating that the new methylated microspheres presented greater selectivity for bilirubin than the totally inorganic hollow TiO2 microspheres. The effectiveness of the molecular imprinting technique was proven for the first time in an organically modified titania material, with imprinting factor values greater than 1.4, corresponding to a significant increase in the maximum adsorption capacity of the template represented by the molecularly imprinted microspheres. In summary, the results obtained with the new methyl-HTM-MIM open the possibility of exploring the application of these microspheres for selective sorption (separation or sensing, for example) or perhaps even for selective photocatalysis, particularly for the degradation of organic compounds.


Subject(s)
Molecular Imprinting , Molecular Imprinting/methods , Microspheres , Titanium , Adsorption
10.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35957012

ABSTRACT

Lipid nanoparticles (LN) composed of biodegradable lipids and produced by green methods are candidates for the encapsulation of pesticides, potentially contributing to decreasing their release in the environment. From a safety-by-design concept, this work proposes LN for the encapsulation of insecticide active ingredients (AI). However, given the complexity of nanoparticles, ecotoxicological studies are often controversial, and a detailed investigation of their effects on the environment is required. Accordingly, this work aimed to produce and characterize LN containing the insecticide lambda-cyhalothrin (LC) and evaluate their safety to crops (Solanum lycopersicum and Zea mays), soil invertebrates (Folsomia candida and Eisenia fetida), and soil microbial parameters. The average particle size for LN-loaded with LC (LN-LC) was 165.4 ± 2.34 nm, with narrow size distribution and negative charge (-38.7 ± 0.954 mV). LN were able to encapsulate LC with an entrapment efficacy of 98.44 ± 0.04%, maintaining the stability for at least 4 months. The LN-LC showed no risk to the growth of crops and reproduction of the invertebrates. The effect on microbial parameters showed that the activity of certain soil microbial parameters can be inhibited or stimulated by the presence of LN at highest concentrations, probably by changing the pH of soil or by the intrinsic properties of LN.

11.
Biosensors (Basel) ; 12(7)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35884318

ABSTRACT

A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Humans , Immunoglobulin G , Limit of Detection , Polymers/chemistry
12.
Anal Chem ; 94(27): 9801-9810, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35766488

ABSTRACT

Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.


Subject(s)
Ethylene Dichlorides , Anions , Cations , Ethylene Dichlorides/chemistry , Kinetics , Static Electricity
13.
Anal Chim Acta ; 1191: 339310, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35033254

ABSTRACT

Artificial receptors that mimic their natural biological counterparts have several advantages, such as lower production costs and increased shelf-life stability/versatility, while overcoming the ethical issues related to raising antibodies in animals. In this work, the proposed tailor-made molecularly imprinted polymer (MIP)-allergen receptors aimed at substituting or even transcending the performance of biological antibodies. For this purpose, a MIP was proposed as an artificial antibody for the recognition of hazelnut Cor a 14-allergen. The target protein was grafted onto the conducting polypyrrole receptor film using gold screen-printed electrodes (Au-SPE). The electrochemical assessment presented a linear response for the dynamic range of 100 fg mL-1-1 µg mL-1 and a LOD of 24.5 fg mL-1, as determined by square wave voltammetry from the calibration curves prepared with standards diluted in phosphate buffer. Surface plasmon resonance (SPR) was used as a secondary transducer to evaluate the performance of the Cor a 14-MIP sensor, enabling a linear dynamic range of 100 fg mL-1- 0.1 µg mL-1 and a LOD of 18.1 fg mL-1. The selectivity of the tailored-made Cor a 14-MIP was tested against potentially cross-reactive plant/animal species based on the rebinding affinity (Freundlich isotherm-KF) of homologues/similar proteins, being further compared with custom-made polyclonal anti-Cor a 14 IgG immunosensor. Results evidenced that the MIP mimics the biorecognition of biological antibodies, presenting higher selectivity (only minor cross-reactivity towards walnut and Brazil nut 2S albumins) than the Cor a 14/anti-Cor a 14 IgG immunosensor. The application of electrochemical Cor a 14-MIP sensor to model mixtures of hazelnut in pasta enabled quantifying hazelnut down to 1 mg kg-1 (corresponding to 0.16 mg kg-1 of hazelnut protein in the matrix). To the best of our knowledge, Cor a 14-MIP is the first sensor based on an artificial/synthetic biorecognition platform for the specific detection of hazelnut allergens, while presenting high-performance parameters with demonstrated application in food safety management.


Subject(s)
Biosensing Techniques , Corylus , Molecular Imprinting , Allergens , Animals , Immunoassay , Molecularly Imprinted Polymers , Polymers , Pyrroles
14.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34947610

ABSTRACT

The urgent need to reduce the consumption of fossil fuels drives the demand for renewable energy and has been attracting the interest of the scientific community to develop materials with improved energy storage properties. We propose a sustainable route to produce nanoporous carbon materials with a high-surface area from commercial graphite using a dry ball-milling procedure through a systematic study of the effects of dry ball-milling conditions on the properties of the modified carbons. The microstructure and morphology of the dry ball-milled graphite/carbon composites are characterized by BET (Brunauer-Emmett-Teller) analysis, SEM (scanning electron microscopy), ATR-FTIR (attenuated total reflectance-Fourier transform infrared spectroscopy) and Raman spectroscopy. As both the electrode and electrolyte play a significant role in any electrochemical energy storage device, the gravimetric capacitance was measured for ball-milled material/glassy carbon (GC) composite electrodes in contact with a deep eutectic solvent (DES) containing choline chloride and ethylene glycol as hydrogen bond donor (HBD) in a 1:2 molar ratio. Electrochemical stability was tracked by measuring charge/discharge curves. Carbons with different specific surface areas were tested and the relationship between the calculated capacitance and the surface treatment method was established. A five-fold increase in gravimetric capacitance, 25.27 F·g-1 (G40) against 5.45 F·g-1, was found for commercial graphene in contact with DES. Optimal milling time to achieve a higher surface area was also established.

15.
Food Chem ; 361: 130122, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34082386

ABSTRACT

Two immunosensors were advanced to target hazelnut Cor a 14 based on electrochemical and optical transduction. Both approaches were developed with two types of custom-made antibodies, namely anti-Cor a 14 IgG (rabbit) and anti-Cor a 14 IgY (hen's egg) targeting the Cor a 14 allergen. Antibody immobilisation was performed via EDC/NHS onto disposable screen-printed electrodes. The detection limit (LOD) of the electrochemical immunoassay for Cor a 14 was 5-times lower than the optical, being down to 0.05 fg mL-1 with a dynamic range of 0.1 fg mL-1 to 0.01 ng mL-1. Antibody selectivity was verified against non-target 2S albumins (potential cross-reactive plant species). Anti-Cor a 14 IgY exhibited the best specificity, presenting minor cross-reactivity with peanut/walnut. Preliminary results of the application of anti-Cor a 14 IgY electrochemical immunosensor to incurred foods established a LOD of 1 mg kg-1 of hazelnut in wheat (0.16 mg kg-1 hazelnut protein).


Subject(s)
Allergens/immunology , Corylus/immunology , Allergens/chemistry , Animals , Antibodies/immunology , Antigens, Plant/chemistry , Antigens, Plant/immunology , Arachis/chemistry , Arachis/immunology , Biosensing Techniques , Chickens , Corylus/chemistry , Cross Reactions , Immunoassay , Juglans/chemistry , Juglans/immunology , Nuts/immunology , Rabbits
16.
Anal Chem ; 93(22): 7815-7824, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34038085

ABSTRACT

In this work, we describe an innovative methodology based on combined surface plasmon resonance (SPR) and electrochemical responses (eSPR) in the same immunoassay for screening CA 15-3 cancer biomarker with high sensitivity (and selectivity), in a very simple, label-free, accurate, and fully automated manner. Detection was achieved by performing two simple steps. In the first step, direct SPR was used to monitor CA 15-3 interaction with surface immobilized antibody. Two linear response ranges were obtained and the detection limit achieved is poor (LOD of 21 U mL-1). However, in the second detection step, electrochemical measurements at the SPR gold surface were performed to measure the decrease of redox probe peak current upon antigen-antibody interaction, providing a suitable amplification strategy to lower detection levels of CA 15-3 (LOD of 0.0998 U mL-1), without the need of additional complex and/or expensive amplification steps to enhance the sensitivity. Moreover, selectivity studies were performed against other common cancer biomarkers and the results showed that the eSPR immunosensor is selective for the CA 15-3 protein. Finally, the clinical applicability of the developed eSPR biosensing methodology was successfully applied to detect CA 15-3 in human serum samples at clinically relevant levels due to the high sensitivity of electrochemical readout. The same concept may be further extended to other proteins of interest.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Electrochemistry , Gold , Humans , Immunoassay , Limit of Detection
17.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35010051

ABSTRACT

A suitable dispersion of carbon materials (e.g., carbon nanotubes (CNTs)) in an appropriate dispersant media, is a prerequisite for many technological applications (e.g., additive purposes, functionalization, mechanical reinforced materials for electrolytes and electrodes for energy storage applications, etc.). Deep eutectic solvents (DES) have been considered as a promising "green" alternative, providing a versatile replacement to volatile organic solvents due to their unique physical-chemical properties, being recognized as low-volatility fluids with great dispersant ability. The present work aims to contribute to appraise the effect of the presence of MWCNTs and Ag-functionalized MWCNTs on the physicochemical properties (viscosity, density, conductivity, surface tension and refractive index) of glyceline (choline chloride and glycerol, 1:2), a Type III DES. To benefit from possible synergetic effects, AgMWCNTs were prepared through pulse reverse electrodeposition of Ag nanoparticles into MWCNTs. Pristine MWCNTs were used as reference material and water as reference dispersant media for comparison purposes. The effect of temperature (20 to 60 °C) and concentration on the physicochemical properties of the carbon dispersions (0.2-1.0 mg cm-3) were assessed. In all assessed physicochemical properties, AgMWCNTs outperformed pristine MWCNTs dispersions. A paradoxical effect was found in the viscosity trend in glyceline media, in which a marked decrease in the viscosity was found for the MWCNTs and AgMWCNTs materials at lower temperatures. All physicochemical parameters were statistically analyzed using a two-way analysis of variance (ANOVA), at a 5% level of significance.

18.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859023

ABSTRACT

This review provides an updated atomic-level perspective regarding the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR), linking the more recent data on this enzyme with a structure/function interpretation. This enzyme catalyzes one of the most important steps in cholesterol biosynthesis and is regarded as one of the most important drug targets in the treatment of hypercholesterolemia. Taking this into consideration, we review in the present article several aspects of this enzyme, including its structure and biochemistry, its catalytic mechanism and different reported and proposed approaches for inhibiting this enzyme, including the commercially available statins or the possibility of using dimerization inhibitors.


Subject(s)
Acyl Coenzyme A/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hydroxymethylglutaryl-CoA Reductases, NAD-Dependent , Hypercholesterolemia , Protein Multimerization/drug effects , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hydroxymethylglutaryl-CoA Reductases, NAD-Dependent/chemistry , Hydroxymethylglutaryl-CoA Reductases, NAD-Dependent/metabolism , Hypercholesterolemia/drug therapy , Hypercholesterolemia/enzymology
19.
Environ Sci Pollut Res Int ; 27(16): 19845-19857, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32227304

ABSTRACT

This work reports the role of different dispersants, namely, polyethylene glycol (PEG 200 2%), ethylene glycol 5%, ethanol 2%, dimethyl sulfoxide (DMSO 5%), and polyvinyl alcohol (PVA 5%) in the toxicity profile of several commercial nanomaterials (NM), such as hydrophilic and hydrophobic TiO2, hydrophilic SiO2, SiO2 in aqueous suspension (aq), and ZnO towards the bioluminescent bacterium Aliivibrio fischeri. The majority of NM showed tendency to form agglomerates in the different dispersants. Although some particle agglomeration could be detected, DMSO at 5% was the best dispersant for hydrophobic TiO2 NM while PVA at 5% was the most effective dispersant for the other types of NM. Average size was not the most relevant aspect accounting for their toxicity. A remarkable reduction in average size was followed by a decrease in NM toxicity, as demonstrated for SiO2 aq. in PVA 5%. Contrarily, despite of high particle agglomeration, ZnO NM showed a higher toxicity to bacteria when compared with other tested NM. Independently of the average particle size or surface charge, the dispersant either enhanced the toxicity to bacteria or acted as physical barrier decreasing the NM harmful effect to A. fischeri.


Subject(s)
Nanostructures , Silicon Dioxide , Aliivibrio fischeri , Particle Size , Suspensions
20.
J Phys Chem B ; 124(19): 3954-3961, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32324418

ABSTRACT

The air-ionic liquid interface for a series of ionic liquids involving imidazolium cations [Cnmim] with different alkyl chain lengths (n = 2, 4, 6, 8, 10, and 12) and the same [NTf2] imide anion has been studied by polarization-resolved second harmonic generation (SHG). An increase as a function of the alkyl chain length of the orientational parameter reveals the increasing ordering of the air-pure ionic liquid interfaces although it is not possible to disentangle the change in mean tilt angle from a change in the tilt angle probability distribution width. Besides, the study of the air-mixed ([C12mim])x([C2mim])1-x[NTf2] ionic liquid interface clearly demonstrates the interfacial nonideality of the mixed ionic liquids. The long alkyl chain cation perturbs the interface as seen from the orientational parameter and displaces the short alkyl chain one for bulk mixture contents as low as 10%. At higher long alkyl chain cation bulk mixture contents, the interface behaves close to a pure long alkyl chain ionic liquid.

SELECTION OF CITATIONS
SEARCH DETAIL
...