Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phycol ; 55(6): 1394-1400, 2019 12.
Article in English | MEDLINE | ID: mdl-31519045

ABSTRACT

Spore settlement and development are bottlenecks for resilience of habitat-forming macroalgal species. These processes are directly related to temperature, a global stressor protagonist of ocean warming. The toxic effects of local pollutants such as copper may be worsened under a global warming scenario. Therefore, in this paper, we investigated the effects of increased temperature combined with elevated concentrations of copper on the viability, photosynthetic pigments, and ultrastructure of Gelidium floridanum tetraspores. Tetraspores were cultivated on slides with sterilized seawater or seawater enriched with CuCl2 , and incubated under 24°C or 30°C for 24 h. Tetraspores cultivated with copper 3.0 µM under 30°C had lower viability. Both temperature and copper had a significant effect on phycocyanin and phycoerythrin concentrations. Samples cultivated with copper under 30°C presented a heavily altered cellular structure, with vesicles throughout the cytoplasm, chloroplasts with altered structure and cells with degenerated cytoplasm and cell walls. Our findings show that temperature and copper significantly affect the viability, photosynthetic pigments, and ultrastructure of G. floridanum tetraspores, presenting an additive interaction for the physiology of this seaweed's early stages.


Subject(s)
Copper , Rhodophyta , Hot Temperature , Photosynthesis , Seawater , Temperature
2.
J Phycol ; 54(6): 870-878, 2018 12.
Article in English | MEDLINE | ID: mdl-30276817

ABSTRACT

Ocean warming is increasing and scientific predictions suggest a rise of up to 4°C in sea water temperatures. The combination of a polluted and warmer environment may be detrimental for aquatic species, especially for primary producers such as seaweeds. This study investigated the potential for interactive effects of an increased seawater temperature in a copper-rich environment on the photosynthetic pigments and metabolic compounds of the red seaweed Gelidium floridanum. Seaweed samples were cultivated in a factorial design with temperature (24°C and 30°C), copper (0 and 3 µM), and time (7 and 14 d). The exposure of G. floridanum to copper and 30°C for 7 d resulted in a lower concentration of chlorophyll a, smaller phycobiliprotein rods and lower concentration of soluble sugars. After 14 d of cultivation, a higher concentration of chlorophyll a and soluble sugars could be observed on seaweeds cultivated under 30°C. The accumulation of carotenoids and the release of phenolic compounds indicated specific protective mechanisms against temperature and copper, respectively. Overall, seaweeds grew less when exposed to copper 3 µM at 30°C.


Subject(s)
Copper/adverse effects , Global Warming , Pigments, Biological/metabolism , Rhodophyta/metabolism , Seawater/chemistry , Water Pollutants, Chemical/adverse effects , Climate Change , Hot Temperature , Oceans and Seas , Rhodophyta/growth & development
3.
Protoplasma ; 254(2): 817-837, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27352314

ABSTRACT

Sargassum cymosum was exposed to cadmium (Cd) to determine any physiological and ultrastructural effects. To accomplish this, S. cymosum samples were cultivated under photosynthetic active radiation (PAR) and Cd (0, 0.1, 0.2, 0.4 and 0.8 mg L-1) during 7 and 14 days in laboratory-controlled conditions (0 mg L-1 Cd at both exposure times as control). Seaweeds had high retention capacity (over 90 %) for both exposure times. Growth rates showed significant increases by 14 days, especially for 0.1 and 0.4 mg L-1 Cd. Photosynthetic parameters were unaffected by Cd treatments. Chlorophyll contents were present in higher concentrations for all Cd treatments compared to respective control. Carotenoid profile showed significant differences in total composition and proportion of fucoxanthin and ß-carotene, and no lutein was detected at 14 days. Phenolic and flavonoid compounds showed major accumulation at 14 days. Transmission electron microscopy (TEM) analyses presented major alterations in Cd-treated samples, when compared with respective control, in particular disorganization of cell wall fibrils. When compared to respective control samples, multivariate analyses showed disparate and complex interactions among metabolites in Cd-exposed seaweeds, giving evidence of physiological defence response. Thus, it can be concluded that Cd is a stressor for S. cymosum, resulting in physiological and structural alterations related to defence mechanisms against oxidative stress and toxicological effects resulting from long-term metal exposure. However, in the present paper, some observed changes also appear to result from acclimation mechanisms under lower concentration of Cd relative to the tolerance of S. cymosum to experimental conditions.


Subject(s)
Cadmium/toxicity , Sargassum/cytology , Sargassum/metabolism , Seaweed/cytology , Seaweed/metabolism , Analysis of Variance , Antioxidants/metabolism , Cadmium/analysis , Carbohydrates/analysis , Cell Survival/drug effects , Chlorophyll/metabolism , Chlorophyll A , Chromatography, High Pressure Liquid , Flavonoids/analysis , Fluorescence , Multivariate Analysis , Phenols/analysis , Photosynthesis/drug effects , Principal Component Analysis , Sargassum/drug effects , Sargassum/ultrastructure , Seawater/chemistry , Seaweed/drug effects , Seaweed/ultrastructure , Solubility
4.
Protoplasma ; 253(1): 111-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25772683

ABSTRACT

The effects of the heavy metals copper (Cu) and lead (Pb) on Sargassum cymosum were evaluated by determining uptake capacity, growth rates, photosynthetic efficiency, contents of photosynthetic pigments and phenolic compounds, 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity, and morphological and cellular changes. S. cymosum was cultivated with Cu and Pb separately and combined at concentrations of 10, 25, and 50 µM for 7 days in laboratory-controlled conditions. Seaweeds under Cu treatment showed the highest biosorption capacity, and growth rates were significantly reduced compared to the control. The photosynthesis/irradiance curves showed alterations in kinetic patterns in the metal-treated samples. Specifically, Cu treatment alone inhibited electron transport rate (ETR) response, while Pb alone induced it. However, samples treated with both Cu and Pb (Cu + Pb) showed inhibition in ETR. The total amount of pigments increased relative to control. Light microscopy showed an increase in phenolic compounds, with physodes migrating towards cortical cells. Scanning electronic microscopy revealed alterations in the typical rough surface of thallus, when compared with control, especially for Pb treatments. Based on these results, it could be concluded that Cu and Pb are stress factors for S. cymosum, promoting alterations in seaweed metabolism and stimulating protective mechanisms against oxidative stress. However, the high bioaccumulation capacity of both heavy metals indicates a possible application for S. cymosum as a biosorbent agent for contaminated wastewater when metals are in low concentrations.


Subject(s)
Copper/toxicity , Lead/toxicity , Seaweed/drug effects , Seaweed/physiology , Absorption, Physiological/drug effects , Antioxidants/metabolism , Chlorophyll/metabolism , Chlorophyll A , Electron Transport/drug effects , Fluorescence , Phenols/metabolism , Photosynthesis/drug effects , Seaweed/growth & development , Seaweed/ultrastructure , Water/metabolism
5.
J Microsc Ultrastruct ; 4(2): 85-94, 2016.
Article in English | MEDLINE | ID: mdl-30023214

ABSTRACT

Studies have clearly demonstrated the damaging effects of UV-B exposure on macroalgae, but few have reported the impact of UV-B on spore germination and development at juvenile stages. Therefore, this work aimed to analyze the effects of UV-B radiation on germlings of Nemalion helminthoides at the tetrasporophytic phase. To accomplish this, germlings of N. helminthoides were cultivated in the laboratory and separated into two groups. The control group was exposed onlyto photosynthetic radiation, while the treatment group was exposed to photosynthetic radiation + UV-B for 2 hours during a period of 12 days. Control germlings showed increasing cellular proliferation and accumulation of reserve substances, as well as intense ramification in the last observed stages between 9 days and 12 days of development. Moreover, the chloroplasts presented a typical globular pyrenoid, profusely traversed by thylakoid membranes. Treated germlings, by contrast, showed intracellular damage, such as cell wall thickness, loss of chloroplast organization, changes in mitochondrial cristae, and increasing atrophy of the Golgi bodies. Additionally, changes in developmental patterns were observed, including loss of polarity in the first divisions of carpospores and abnormal stem ramification. The quantification of autofluorescence data coincided with the ultrastructural changes observed in the chloroplasts of cells exposed to UV-B. It can be concluded that exposure to radiation changed the developmental pattern and morphology of the germlings of N. helminthoides.

6.
Protoplasma ; 252(5): 1347-59, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25666304

ABSTRACT

By evaluating carotenoid content, photosynthetic pigments and changes in cellular morphology, growth rates, and photosynthetic performance, this study aimed to determine the effect of cadmium (Cd) on the development of young gametophytes of Gelidium floridanum. Plants were exposed to 7.5 and 15 µM of Cd for 7 days. Control plants showed increased formation of new filamentous thallus, increased growth rates, presence of starch grains in the cortical and subcortical cells, protein content distributed regularly throughout the cell periphery, and intense autofluorescence of chloroplasts. On the other hand, plants treated with Cd at concentrations of 7.5 and 15 µM showed few formations of new thallus with totally depigmented regions, resulting in decreased growth rates. Plants exposed to 7.5 µM Cd demonstrated alterations in the cell wall and an increase in starch grains in the cortical and subcortical cells, while plants exposed to 15 µM Cd showed changes in medullary cells with no organized distribution of protein content. The autofluorescence and structure of chloroplasts decreased, forming a thin layer on the periphery of cells. Cadmium also affected plant metabolism, as visualized by a decrease in photosynthetic pigments, in particular, phycoerythrin and phycocyanin contents, and an increase in carotenoids. This result agrees with decreased photosynthetic performance and chronic photoinhibition observed after treatment with Cd, as measured by the decrease in electron transport rate. Based on these results, it was concluded that exposure to Cd affects cell metabolism and results in significant toxicity to young gametophytes of G. floridanum.


Subject(s)
Cadmium/toxicity , Germ Cells, Plant/drug effects , Rhodophyta/drug effects , Water Pollutants, Chemical/toxicity , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Electron Transport , Germ Cells, Plant/physiology , Germ Cells, Plant/ultrastructure , Photosynthesis , Rhodophyta/cytology , Rhodophyta/physiology
7.
Photochem Photobiol ; 91(2): 359-70, 2015.
Article in English | MEDLINE | ID: mdl-25443444

ABSTRACT

The effect of ultraviolet (UV) radiation and copper (Cu) on apical segments of Pterocladiella capillacea was examined under two different conditions of radiation, PAR (control) and PAR+UVA+UVB (PAR+UVAB), and three copper concentrations, ranging from 0 (control) to 0.62, 1.25 and 2.50 µm. Algae were exposed in vitro to photosynthetically active radiation (PAR) at 70 µmol photons m(-2)  s(-1) , PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) during a 12-h photocycle for 3 h each day for 7 days. The effects of radiation and copper on growth rates, content of photosynthetic pigments and photosynthetic performance were analyzed. In addition, samples were processed for light and transmission electron microscopy. The content of photosynthetic pigments decreased after exposure to radiation and Cu. Compared with PAR radiation and copper treatments modified the kinetics patterns of the photosynthesis/irradiance curve. The treatments also caused changes in the ultrastructure of cortical and subcortical cells, including increased cell wall thickness and accumulation of plastoglobuli, as well as changes in the organization of chloroplasts. The results indicate that the synergistic interaction between UV radiation and Cu in P. capillacea, led to the failure of protective mechanisms and causing more drastic changes and cellular imbalances.


Subject(s)
Cell Wall/radiation effects , Chloroplasts/radiation effects , Copper/toxicity , Photons , Photosynthesis/radiation effects , Rhodophyta/radiation effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Chlorophyll/biosynthesis , Chlorophyll A , Chloroplasts/drug effects , Chloroplasts/physiology , Chloroplasts/ultrastructure , Microscopy, Electron, Transmission , Photoperiod , Photosynthesis/drug effects , Photosynthesis/physiology , Phycobiliproteins/biosynthesis , Pigments, Biological/biosynthesis , Rhodophyta/drug effects , Rhodophyta/physiology , Rhodophyta/ultrastructure , Ultraviolet Rays
8.
Microsc Microanal ; 20(5): 1411-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24983815

ABSTRACT

The in vitro effect of cadmium (Cd) on apical segments of Pterocladiella capillacea was examined. Over a period of 7 days, the segments were cultivated with the combination of different salinities (25, 35, and 45 practical salinity units) and Cd concentrations, ranging from 0.17 to 0.70 ppm. The effects of Cd on growth rates and content of photosynthetic pigments were analyzed. In addition, metabolic profiling was performed, and samples were processed for microscopy. Serious damage to physiological performance and ultrastructure was observed under different combinations of Cd concentrations and salinity values. Elementary infrared spectroscopy revealed toxic effects registered on growth rate, photosynthetic pigments, chloroplast, and mitochondria organization, as well as changes in lipids and carbohydrates. These alterations in physiology and ultrastructure were, however, coupled to activation of such defense mechanisms as cell wall thickness, reduction of photosynthetic harvesting complex, and flavonoid. In conclusion, P. capillacea is especially sensitive to Cd stress when intermediate concentrations of this pollutant are associated with low salinity values. Such conditions resulted in metabolic compromise, reduction of primary productivity, i.e., photosynthesis, and carbohydrate accumulation in the form of starch granules. Taken together, these findings improve our understanding of the potential impact of this metal in the natural environment.


Subject(s)
Cadmium/toxicity , Rhodophyta/drug effects , Rhodophyta/growth & development , Metabolome , Microscopy , Pigments, Biological/analysis , Rhodophyta/chemistry , Rhodophyta/cytology , Salinity , Spectrum Analysis
9.
Photochem Photobiol ; 90(5): 1050-60, 2014.
Article in English | MEDLINE | ID: mdl-24893751

ABSTRACT

This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 µmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development.


Subject(s)
Electrons , Gametogenesis, Plant/radiation effects , Photosynthesis/radiation effects , Rhodophyta/radiation effects , Carotenoids/biosynthesis , Cell Wall/radiation effects , Cell Wall/ultrastructure , Chlorophyll/biosynthesis , Electron Transport/radiation effects , Gametogenesis, Plant/physiology , Microscopy, Electron , Photosynthesis/physiology , Phycocyanin/antagonists & inhibitors , Phycocyanin/biosynthesis , Phycoerythrin/antagonists & inhibitors , Phycoerythrin/biosynthesis , Rhodophyta/growth & development , Rhodophyta/metabolism , Rhodophyta/ultrastructure , Ultraviolet Rays
10.
Ecotoxicol Environ Saf ; 105: 80-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793517

ABSTRACT

Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50µM and 100µM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd.


Subject(s)
Metals, Heavy/metabolism , Metals, Heavy/toxicity , Rhodophyta/drug effects , Rhodophyta/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Cell Respiration/drug effects , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photosynthesis/drug effects , Pigments, Biological/metabolism , Rhodophyta/growth & development , Rhodophyta/ultrastructure
11.
Photochem Photobiol ; 90(3): 560-73, 2014.
Article in English | MEDLINE | ID: mdl-24329523

ABSTRACT

The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR-only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 µmol photons m(-2) s(-1), PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR-only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.


Subject(s)
Adaptation, Physiological , Phaeophyceae/physiology , Photosynthesis , Salinity , Ultraviolet Rays , Electron Transport , Marine Biology , Microscopy, Electron, Transmission , Phaeophyceae/radiation effects , Phaeophyceae/ultrastructure , Pigments, Biological/metabolism
12.
J Phycol ; 50(3): 577-86, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26988329

ABSTRACT

Gelidium floridanum W.R. Taylor tetraspores are units of dispersal and are responsible for substrate attachment. This study aimed to examine evidence of direct interaction between germ tube formation and Golgi activity during tetraspore germination of G. floridanum. After release, the tetraspores were incubated with brefeldin A (BFA) in concentrations of 4 and 8 µM over a 6 h period. The controls and treatments were analyzed with light, fluorescence (FM4-64 dye) and transmission electron microscopy. In the control samples, the Golgi bodies were responsible for germ tube formation. In contrast, BFA-treated samples were observed to inhibit spore adhesion and germ tube formation. These tetraspores also showed an increase in volume (≥30 µm width). BFA treatment also resulted in the disassembly of Golgi cisternae and the formation of vesiculated areas of the cytoplasm, blocking the secretion of protein and amorphous matrix polysaccharides. When stained with FM4-64, the control samples showed fluorescence in the apical region of the germ tube, but the treated samples showed an intense fluorescence throughout the cytoplasm. From these results, we can conclude that the germ tube is formed by the incorporation of vesicles derived from Golgi. Thus, vesicle secretion and Golgi organization are basic processes and essential in adhesion and tube formation. By blocking the secretion of protein and amorphous matrix polysaccharides, BFA treatment precluded tetraspore germination.

13.
Microsc Microanal ; 19(3): 513-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23551883

ABSTRACT

The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.


Subject(s)
Copper/toxicity , Gracilaria/drug effects , Lead/toxicity , Biomass , Carotenoids/analysis , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/ultrastructure , Chlorophyll/analysis , Chlorophyll A , Chloroplasts/drug effects , Chloroplasts/ultrastructure , Copper/analysis , Cytoplasm/chemistry , Electron Probe Microanalysis , Gracilaria/growth & development , Gracilaria/metabolism , Gracilaria/ultrastructure , Lead/analysis , Microscopy , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , NADH Dehydrogenase/metabolism , Photosynthesis/drug effects , Phycobiliproteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...