Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Rev. bras. zootec ; 51: e20210183, 2022. tab, graf
Article in English | VETINDEX | ID: biblio-1442909

ABSTRACT

The objective of this study was to evaluate whether replacing corn starch (CS) energy with isolated soy protein (ISP) and soybean oil (SO) and the ambient temperature affect the protein and energy requirements for maintenance and gain of European quail. Thus, a total of 432 European quail from 10 to 30 days of age, distributed in a completely randomized design, were used to estimate the protein and energy requirements for maintenance through the comparative slaughter methodology. The treatments consisted of three diets formulated with the replacement of CS, corresponding to 15% of the metabolizable energy in the diet, with ISP and SO, two controlled temperatures (26 and 35 °C), and three levels of feed supply (ad libitum, and 70 and 40% of ad libitum intake), with four replicates of six birds. Protein and energy requirements for weight gain were determined from 160 European quail, slaughtered every five days at 10, 15, 20, 25, and 30 days of age. Birds were housed in four groups of 40 birds in a room with thermoneutral temperature (26 °C). The energy sources of the feed and temperatures studied affected protein and energy requirements for maintenance and gain of European quail. Replacing CS energy by 15% of dietary energy with SO results in lower protein and energy maintenance requirements for European quail at both temperatures. The protein and energy weight gain requirements of quail fed SO as an energy source is higher than CS and ISP.(AU)


Subject(s)
Animals , Dietary Proteins/adverse effects , Coturnix/physiology , Animal Feed/analysis , Energy Metabolism
2.
Vet. Zoot. ; 28: 1-14, 29 mar. 2021.
Article in Portuguese | VETINDEX | ID: vti-32525

ABSTRACT

El objetivo de esta revision fue resaltar el comportamiento hormonal (insulina, glucagon, grelina, leptina, T3, T4, cortisol, adrenalina, IGF y GH) que actúan sobre el metabolismo energético de animals no rumiantes en estado de ayuno. Los procesos metabólicos están regulados por la disponibilidade de substrato, por mecanismos neuroendocrinos. Para comprender las vías metabólicas y su regulación hormonal en los diferentes tejidos, es necessário detener el metabolismo especializado en los diversos órganos y tejidos que integran el metabolismo energético en todo el cuerpo del animal. Así, se espera dilucidar la amplia gama de hormonas movilizadoras de energia y los mecanismos hormonales presentes en cada tejido, así como describer la interrelación entre insulin, glucagón y adrenalina en la coordinación del metabolismo energético de músculo, hígado y tejido adipose, debido a que cada tejido tiene sus propias características metabólicas, en general, la concentración de nutrientes en la sangre es controlada por el hígado, que a su vez se convierte en el órgano central para mantener la homeostasis de los principals nutrientes. El suministro de energia en el cuerpo durante el período de ayuno se debe a la degradación del glucógeno, la proteólisis muscular y la lipólisis que jugarán roles fisiológicos específicos para que las vías metabólicas tengan sus propias características...(AU)


The objective of this review was to emphasize the hormonal behavior (Insulin, glucagon, ghrelin, leptin, T3, T4, cortisol, adrenaline IGF and GH) acting on energy metabolism of non-ruminant animals on the fasting state. Metabolic processes are regulated by the availability of substrate, by neuroendocrine mechanisms. To understand the metabolic pathways and their hormonal regulation on the different tissues, it is necessary to stop to the specialized metabolism on the various organs and tissues that integrate the energy metabolism in the whole organism of the animal. Thus it is expected to elucidate the broad range of energy mobilization hormones and the hormonal mechanisms present in each tissue, as well as to describe the interrelationship between insulin, glucagon and adrenaline in the coordination of energetic metabolism of muscle, liver and tissue Because each tissue has its own metabolic characteristics, in general, the concentration of nutrients in the blood is controlled by the liver, which in turn becomes the central organ of the maintenance of the homeostasis of the main nutrients. The energy supply in the body during the fasting period is due to the degradation of glycogen, muscular proteolysis and lipolysis that will play specific physiological roles so that the metabolic pathways have their own characteristics, the release of the hormones being regulated by...(AU)


Objetivou-se com está revisão ressaltar o comportamento hormonal (insulina, glucagon, grelina, leptina, T3, T4, cortisol, adrenalina IGF e GH) atuantes no metabolismo energético de animais não ruminantes sobre o estado de jejum. Os processos metabólicos são regulados pela disponibilidade de substrato, por mecanismos neuroendócrinos. Para entender as vias metabólicas e sua regulação hormonal sobre os diferentes tecidos, faz-se necessário deter-se ao metabolismo especializado sobre os vários órgãos e tecidos que integram o metabolismo energético em todo o organismo do animal. Assim espera-se elucidar o amplo alcance dos hormônios de mobilização de energia e os mecanismos hormonais presente em cada tecido, como também descrever a inter-relação entre a insulina, o glucagon e a adrenalina na coordenação do metabolismo energético do músculo, fígado e tecido adiposo, pois cada tecido tem características metabólicas própria, de um modo geral, a concentração dos nutrientes no sangue é controlada pelo fígado, que por sua vez, torna-se o órgão central da manutenção da homeostasia dos principais nutrientes. O aporte energético no organismo durante o período de jejum se dá pela degradação de glicogênio, a proteólise muscular e lipólise que vão desempenhar papéis fisiológicos específicos para que as vias metabólicas tenham características próprias, sendo a liberação dos hormônios regulada...(AU)


Subject(s)
Animals , Fasting/metabolism , Hormones/analysis , Energy Metabolism , Lipid Metabolism , Insulin , Glucagon , Ghrelin , Leptin , Hydrocortisone , Epinephrine , Triiodothyronine , Thyroxine
3.
Vet. zootec ; 28: 1-14, 13 jan. 2021.
Article in Portuguese | VETINDEX | ID: biblio-1503649

ABSTRACT

El objetivo de esta revision fue resaltar el comportamiento hormonal (insulina, glucagon, grelina, leptina, T3, T4, cortisol, adrenalina, IGF y GH) que actúan sobre el metabolismo energético de animals no rumiantes en estado de ayuno. Los procesos metabólicos están regulados por la disponibilidade de substrato, por mecanismos neuroendocrinos. Para comprender las vías metabólicas y su regulación hormonal en los diferentes tejidos, es necessário detener el metabolismo especializado en los diversos órganos y tejidos que integran el metabolismo energético en todo el cuerpo del animal. Así, se espera dilucidar la amplia gama de hormonas movilizadoras de energia y los mecanismos hormonales presentes en cada tejido, así como describer la interrelación entre insulin, glucagón y adrenalina en la coordinación del metabolismo energético de músculo, hígado y tejido adipose, debido a que cada tejido tiene sus propias características metabólicas, en general, la concentración de nutrientes en la sangre es controlada por el hígado, que a su vez se convierte en el órgano central para mantener la homeostasis de los principals nutrientes. El suministro de energia en el cuerpo durante el período de ayuno se debe a la degradación del glucógeno, la proteólisis muscular y la lipólisis que jugarán roles fisiológicos específicos para que las vías metabólicas tengan sus propias características...


The objective of this review was to emphasize the hormonal behavior (Insulin, glucagon, ghrelin, leptin, T3, T4, cortisol, adrenaline IGF and GH) acting on energy metabolism of non-ruminant animals on the fasting state. Metabolic processes are regulated by the availability of substrate, by neuroendocrine mechanisms. To understand the metabolic pathways and their hormonal regulation on the different tissues, it is necessary to stop to the specialized metabolism on the various organs and tissues that integrate the energy metabolism in the whole organism of the animal. Thus it is expected to elucidate the broad range of energy mobilization hormones and the hormonal mechanisms present in each tissue, as well as to describe the interrelationship between insulin, glucagon and adrenaline in the coordination of energetic metabolism of muscle, liver and tissue Because each tissue has its own metabolic characteristics, in general, the concentration of nutrients in the blood is controlled by the liver, which in turn becomes the central organ of the maintenance of the homeostasis of the main nutrients. The energy supply in the body during the fasting period is due to the degradation of glycogen, muscular proteolysis and lipolysis that will play specific physiological roles so that the metabolic pathways have their own characteristics, the release of the hormones being regulated by...


Objetivou-se com está revisão ressaltar o comportamento hormonal (insulina, glucagon, grelina, leptina, T3, T4, cortisol, adrenalina IGF e GH) atuantes no metabolismo energético de animais não ruminantes sobre o estado de jejum. Os processos metabólicos são regulados pela disponibilidade de substrato, por mecanismos neuroendócrinos. Para entender as vias metabólicas e sua regulação hormonal sobre os diferentes tecidos, faz-se necessário deter-se ao metabolismo especializado sobre os vários órgãos e tecidos que integram o metabolismo energético em todo o organismo do animal. Assim espera-se elucidar o amplo alcance dos hormônios de mobilização de energia e os mecanismos hormonais presente em cada tecido, como também descrever a inter-relação entre a insulina, o glucagon e a adrenalina na coordenação do metabolismo energético do músculo, fígado e tecido adiposo, pois cada tecido tem características metabólicas própria, de um modo geral, a concentração dos nutrientes no sangue é controlada pelo fígado, que por sua vez, torna-se o órgão central da manutenção da homeostasia dos principais nutrientes. O aporte energético no organismo durante o período de jejum se dá pela degradação de glicogênio, a proteólise muscular e lipólise que vão desempenhar papéis fisiológicos específicos para que as vias metabólicas tenham características próprias, sendo a liberação dos hormônios regulada...


Subject(s)
Animals , Hormones/analysis , Fasting/metabolism , Energy Metabolism , Lipid Metabolism , Epinephrine , Glucagon , Ghrelin , Hydrocortisone , Insulin , Leptin , Thyroxine , Triiodothyronine
4.
Rev. Bras. Zootec. (Online) ; 47: e20170235, 2018. tab
Article in English | VETINDEX | ID: biblio-1515936

ABSTRACT

This work aimed to evaluate the performance and egg quality of lightweight laying hens supplemented with a high biological value mineral, carbo-amino-phospho-chelates (CAPC), compared with inorganic minerals (sulfates), at different recommended values. A total of 320 Dekalb White hens, between 53 and 77 weeks of age, were distributed in a completely randomized design into two treatments, 10 replicates of 16 birds each. The treatments consisted of a reference diet formulated according to breed manual recommendations, in which one group was supplemented with a trace mineral source, CAPC (Cu, 8.6; Fe, 43.7; Mn, 56.4; Se, 0.34; and Zn, 43.7 mg/kg) and the other with a sulfate source, using the levels recommended in the breed manual (Cu, 8; Fe, 60; Mn, 70; Se, 0.25; and Zn, 60 mg/kg). There was no effect of trace mineral supplementation on egg production variables, feed conversion ratio by mass or by dozen eggs, and eggs per housed bird. However, there was an increase in feed intake and weight and mass of eggs when birds fed diet supplemented with CAPC. Regarding egg quality, CAPC supplementation increased the albumen weight and percentage, shell weight, thickness, and strength, and Haugh unit. The eggs from birds fed CAPC supplementation showed higher levels of iron and zinc when compared with eggs from birds fed the sulfate source diet. Better quality rates were observed in variables related to shelf life for the group that received CAPC. Trace mineral sources and recommendations in the diets of high genetic potential laying hens need to be reassessed and allow us to conclude that totally replacing the sulfate for different recommendations of CAPC in laying hen diets helps to improve quality characteristics as well as the nutritional value of eggs.(AU)


Subject(s)
Animals , Trace Elements/analysis , Chickens/physiology , Eggs/analysis , Albumins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL