Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 10(1): 281-292, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31732504

ABSTRACT

The hexaploid sweetpotato (Ipomoea batatas (L.) Lam., 2n = 6x = 90) is an important staple food crop worldwide and plays a vital role in alleviating famine in developing countries. Due to its high ploidy level, genetic studies in sweetpotato lag behind major diploid crops significantly. We built an ultra-dense multilocus integrated genetic map and characterized the inheritance system in a sweetpotato full-sib family using our newly developed software, MAPpoly. The resulting genetic map revealed 96.5% collinearity between I. batatas and its diploid relative I. trifida We computed the genotypic probabilities across the whole genome for all individuals in the mapping population and inferred their complete hexaploid haplotypes. We provide evidence that most of the meiotic configurations (73.3%) were resolved in bivalents, although a small portion of multivalent signatures (15.7%), among other inconclusive configurations (11.0%), were also observed. Except for low levels of preferential pairing in linkage group 2, we observed a hexasomic inheritance mechanism in all linkage groups. We propose that the hexasomic-bivalent inheritance promotes stability to the allelic transmission in sweetpotato.


Subject(s)
Chromosomes, Plant/genetics , Genetic Linkage , Ipomoea batatas/genetics , Polyploidy , Chromosome Mapping/methods , Chromosome Pairing , Genetic Loci , Haplotypes
2.
G3 (Bethesda) ; 9(8): 2463-2475, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31171567

ABSTRACT

Genomic selection is an efficient approach to get shorter breeding cycles in recurrent selection programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in diploid species. The major challenge is to distinguish the different types of heterozygotes present in polyploid populations. In this work, we evaluated different genomic prediction models applied to a recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotyping-by-sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with GS-DD data. However, different predictive models had similar predictive ability performance. In this work, we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that genomic selection may lead to additional gains in recurrent selection program of P. maximum.


Subject(s)
Alleles , Gene Dosage , Genome, Plant , Genomics , Panicum/genetics , Algorithms , Genomics/methods , Phenotype , Plant Breeding , Polyploidy , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...