Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
PLoS One ; 19(5): e0300980, 2024.
Article in English | MEDLINE | ID: mdl-38728311

ABSTRACT

In this cross-sectional study, we determined the relative impact of long-term occupational exposure to pesticides on physical performance and perception of tiredness. Experimental data was collected in locus from agricultural communities and included surveys to assess the duration of exposure to pesticides, social status, habitual physical activity levels, presence of common mental disorders (CMD), and self-reported tiredness. Plasmatic cholinesterase (PChE), body composition and traditional functional performance tests (Handgrip strength-HGS; Time up and go-TUG; and Sit-to-stand-STS) were obtained. From the 127 individuals tested, cluster analysis yielded 80 individuals divided in Direct Exposed (n = 37) and Indirect Exposed (n = 43); Tired (n = 16), and Not Tired (n = 64). PChE values were within the reference values (5209.64-13943.53 U/L). Pesticide exposure had no influence on PChE levels, CMD or fatigue (p > 0.05), while Self-reported tiredness had (p < 0.05). Principal Component Analyses showed that HGS; STS and TUG (i.e., physical performance variables) are negatively influenced by two independent factors: pesticide exposure and self-reported tiredness. We conclude that chronic pesticide exposure and tiredness can negatively impact physical performance, independently, without clinically significant changes in PChE levels that is a biomarker used to track pesticide intoxication. Functional physical tests can be a useful tool to identify chronic pesticide exposure, and help with the limitations of commonly used parameters (i.e. PChE and CMD). Self-reported tiredness is a confounding variable.


Subject(s)
Biomarkers , Occupational Exposure , Pesticides , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Male , Adult , Female , Cross-Sectional Studies , Middle Aged , Biomarkers/blood , Fatigue/chemically induced , Hand Strength , Cholinesterases/blood , Physical Functional Performance
2.
Exp Brain Res ; 242(6): 1411-1419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613669

ABSTRACT

Force steadiness can be influenced by visual feedback as well as presence of a cognitive tasks and potentially differs with age and sex. This study determined the impact of altered visual feedback on force steadiness in the presence of a difficult cognitive challenge in young and older men and women. Forty-nine young (19-30 yr; 25 women, 24 men) and 25 older (60-85 yr; 15 women; 10 men) performed low force (5% of maximum) static contractions with the elbow flexor muscles in the presence and absence of a cognitive challenge (counting backwards by 13) either with low or high visual feedback gain. The cognitive challenge reduced force steadiness (increased force fluctuation amplitude) particularly in women (cognitive challenge × sex: P < 0.05) and older individuals (cognitive challenge × age: P < 0.05). Force steadiness improved with high-gain visual feedback compared with low-gain visual feedback (P < 0.01) for all groups (all interactions: P > 0.05). Manipulation of visual feedback had no influence on the reduced force steadiness in presence of the cognitive challenge for all groups (all P > 0.05). These findings indicate that older individuals and women have greater risk of impaired motor performance of the upper extremity if steadiness is required during a low-force static contraction. Manipulation of visual feedback had minimal effects on the reduced force steadiness in presence of a difficult cognitive challenge.


Subject(s)
Aging , Cognition , Feedback, Sensory , Humans , Female , Male , Aged , Adult , Aging/physiology , Young Adult , Feedback, Sensory/physiology , Middle Aged , Aged, 80 and over , Cognition/physiology , Muscle, Skeletal/physiology , Psychomotor Performance/physiology , Muscle Contraction/physiology
3.
J Pain Res ; 17: 571-581, 2024.
Article in English | MEDLINE | ID: mdl-38347855

ABSTRACT

Introduction: Many clinical musculoskeletal pain conditions are characterized by chronic inflammation that sensitizes nociceptors. An unresolved issue is whether inflammation affects all nociceptors in a similar manner. Exercise-induced muscle damage (EIMD) has been proposed as a model for simulating clinical inflammatory pain in healthy samples. We sought to test the effect of EIMD on various painful stimuli (pressure and thermal), central pain processing (via the nociceptive flexion reflex) and endogenous pain modulation via conditioned pain modulation and exercise-induced hypoalgesia. Methods: Eighteen participants (9F, age: 24.6 ± 3.3) were recruited for repeated measures testing and each completed pain sensitivity testing prior to and 48 hours after an eccentric exercise protocol. The participants performed a minimum of 6 rounds of 10 eccentric knee extension exercises to induce muscle damage and localized inflammation in the right quadriceps. Force decrements, knee range-of-motion, and delayed onset muscle soreness (DOMS) were used to quantify EIMD. Results: There was a significant main effect of time for pressure pain (%diff; -58.9 ± 23.1; p = 0.02, ηp2 = 0.28) but no significant main effect was observed for limb (%diff; -15.5 ± 23.9; p = 0.53, ηp2 = 0.02). In contrast, there was a significant interaction between time and limb (p < 0.001, ηp2 = 0.47) whereby participants had lower pressure pain sensitivity in the right leg only after the damage protocol (%diff; -105.9 ± 29.2; p = 0.002). Discussion: Individuals with chronic inflammatory pain usually have an increased sensitivity to pressure, thermal, and electrical stimuli, however, our sample, following muscle damage to induce acute inflammation only had sensitivity to mechanical pain. Exercise induced inflammation may reflect a peripheral sensitivity localized to the damaged muscle rather than a global sensitivity like those with chronic pain display.

4.
Brain Sci ; 13(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37508919

ABSTRACT

BACKGROUND: Using smartphones during a task that requires upright posture is suggested to be detrimental for the overall motor performance. The aim of this study was to determine the role of age and specific aspects of cognitive function on walking and standing tasks in the presence of smartphone use. METHODS: 51 older (36 women) and 50 young (35 women), mean age: 66.5 ± 6.3 and 22.3 ± 1.7 years, respectively, were enrolled in this study. The impact of using a smartphone was assessed during a dynamic (timed up and go, TUG) and a static balance test (performed on a force platform). Multivariate analyses of variance were applied to verify main effects of age, task, estimates of cognitive function and interactions. RESULTS: Compared to young, older individuals exhibited a poorer performance on the dynamic and on the static test (age effect: p = 0.001 for both variables). Dual-tasking with a smartphone had a negative impact on both groups (task effect: p = 0.001 for both variables). The negative impact, however, was greater in the older group (age × task effect: p = 0.001 for both variables). Executive function and verbal fluency partially explained results of the dynamic and static tests, respectively. CONCLUSIONS: The negative impact of using a smartphone while performing tasks similar to daily activities is higher in older compared to young people. Subclinical deficits in distinct aspects of cognitive function partially explain the decreased performance when dual-tasking.

5.
Front Physiol ; 14: 1166218, 2023.
Article in English | MEDLINE | ID: mdl-37260592

ABSTRACT

Despite activities of daily living being frequently performed simultaneously with a cognitive task, motor function is often investigated in isolation, which can hinder the applicability of findings. This brief review presents evidence that 1) performing a cognitive challenge simultaneously with a motor task can negatively impact force steadiness and fatigability of limb muscles during a static contraction, 2) the negative impact on old adults (>65 years old), particularly older women is greater than young when a cognitive challenge is simultaneously performed with a static motor task, 3) age-related mechanisms potentially explain impairments in motor performance in the presence of a cognitive challenge, and 4) the mechanisms for the age-related decrements in motor performance can be distinct between men and women. These observations are highly relevant to the older adults, given the increased risk of accidents and injury when a motor task is performed with a high cognitive-demand task, especially in light of the expanding reliance on an aging workforce.

6.
Front Physiol ; 14: 1297242, 2023.
Article in English | MEDLINE | ID: mdl-38274043

ABSTRACT

The underrepresentation of the female population in exercise sciences could be attributed, at least in part, to difficulty in appropriately accounting for the effects of the menstrual cycle (MC). Previous studies examining the effects of the MC on aerobic performance and subjective measures of aerobic performance show conflicting results. Purpose: The study examined how the MC affects the objective and subjective measures of aerobic performance within untrained female participants and in comparison with untrained male participants assessed at similar time intervals. Methods: Twenty-one participants (12 females and 9 males) completed a graded exercise test (GXT) on a cycle ergometer. The female participants were tested during their early follicular (EF; menses), ovulatory (O), and mid-luteal (ML) phases of the MC. The male participants were included as the control group and were randomly assigned to a menstrual cycle phase for each visit. During GXT, maximal oxygen consumption (VO2max), respiratory exchange ratio (RER), maximal heart rate (HRmax), peak blood lactate, and rating of perceived exertion (RPE) were determined. Twenty-four hours post-exercise, the perceived recovery status (PRS) was assessed. The MC phase was estimated using basal body temperature (BBT) in the female participants. Results: The male participants obtained a higher peak power and VO2max compared to the female participants (p < 0.05). All objective measures of aerobic performance did not significantly differ across the MC phases or time points that were tested. In the untrained female participants, an effect of the MC phase on RPE was found, with RPE being higher at EF (8.92 ± 0.79) compared to O (7.67 ± 1.23; p < 0.05) and ML (7.75 ± 1.06; p < 0.05). In addition, an effect of the MC phase on PRS was found, with perceived recovery being lower at EF (6.83 ± 0.94) compared to O (8.83 ± 1.12) and ML (8.67 ± 0.65; all p < 0.005) for the untrained female participants. No significant differences in RPE and PRS were found between tests in the untrained male participants. The female participants had lower perceived recovery following EF (6.83 ± 0.94) compared with the male participants (9.00 ± 1.00; p < 0.001). Conclusion: The untrained female participants perceived greater exertion during GXT and impaired recovery following GXT in EF compared to O and ML. These results may be attributed to either a drop in female sex hormone concentrations or discomfort associated with menses. The male participants did not exhibit any changes over time. Future studies using subjective parameters such as perceived exertion to track the internal load of training in the naturally menstruating female population should consider menses.

7.
Front Aging Neurosci ; 14: 821915, 2022.
Article in English | MEDLINE | ID: mdl-35370603

ABSTRACT

Purpose: (1) To determine the impact of transcranial direct current stimulation (tDCS) applied alone or combined with other therapies on the recovery of motor function after stroke and (2) To determine tDCS dosage effect. Methods: Randomized controlled trials comparing the effects of tDCS with sham, using the Barthel Index (BI), the upper and lower extremity Fugl-Meyer Assessment (FMA), and the Modified Ashworth Scale (MAS), were retrieved from PubMed, Medline (EBSCO), and Cumulative Index to Nursing and Allied Health Literature (CINAHL) from their inception to June 2021. Calculations for each assessment were done for the overall effect and associated therapy accounting for the influence of stroke severity or stimulation parameters. Results: A total of 31 studies involving metrics of the BI, the upper extremity FMA, the lower extremity FMA, and the MAS were included. tDCS combined with other therapies was beneficial when assessed by the BI (mean difference: 6.8; P < 0.01) and these studies typically had participants in the acute stage. tDCS effects on the upper and lower extremity FMA are unclear and differences between the sham and tDCS groups as well as differences in the associated therapy type combined with tDCS potentially influenced the FMA results. tDCS was not effective compared to sham for the MAS. Stimulation types (e.g., anodal vs. cathodal) did not influence these results and dosage parameters were not associated with the obtained effect sizes. Conventional therapy associated with tDCS typically produced greater effect size than assisted therapy. The influence of stroke severity is unclear. Conclusion: Potential benefits of tDCS can vary depending on assessment tool used, duration of stroke, and associated therapy. Mechanistic studies are needed to understand the potential role of stimulation type and dosage effect after stroke. Future studies should carefully conduct group randomization, control for duration of stroke, and report different motor recovery assessments types. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021290670].

8.
Biomed Phys Eng Express ; 8(1)2021 11 18.
Article in English | MEDLINE | ID: mdl-34753120

ABSTRACT

Optical coherence tomography (OCT) is a well-established imaging technology for high-resolution, cross-sectional imaging of biological tissues. Imaging processing and light attenuation coefficient estimation allows to further improve the OCT diagnostic capability. In this paper we use a commercial OCT system, Telesto II-1325LR from Thorlabs, and demonstrate its ability to differentiate normal and tumor mammary mouse glands with the OCT attenuation coefficient. Using several OCT images of normal and tumor mammary mouse glands (n = 26), a statistical analysis was performed. The attenuation coefficient was calculated in depth, considering a slope of 0.5 mm. The normal glands present a median attenuation coefficient of 0.403 mm-1, comparatively to 0.561 mm-1obtained for tumor mammary glands. This translates in an attenuation coefficient approximately 39% higher for tumor mammary glands when compared to normal mammary glands. The OCT attenuation coefficient estimation eliminates the subjective analysis provided by direct visualization of the OCT images.


Subject(s)
Neoplasms , Tomography, Optical Coherence , Animals , Mice , Tomography, Optical Coherence/methods
9.
Article in English | MEDLINE | ID: mdl-33922474

ABSTRACT

The purpose of this study was to examine age-related differences in muscle performance in women divided into young (YW, 20-39 years, n = 29) middle-aged (MAW, 40-59 years, n = 33), and older (OW, ≥60 years, n = 40) age groups. METHODS: Hand grip strength, vertical jump performance, and knee extensor (KE) strength (0 deg/s, 60 deg/s, and 240 deg/s), speed of movement (SoM; at 1 Nm, 20%, 40%, and 60% isometric strength), and endurance (30-repetition test at 60 degs/s and 240 deg/s) were assessed. Computed tomography-acquired muscle cross-sectional area (mCSA) was measured and included to determine specific strength (KE strength/mCSA). RESULTS: Hand grip strength was similar across groups, while jump performance declined with age (YW and MAW > OW, p < 0.001). KE strength declined significantly with age (all conditions p < 0.01), while specific strength was similar across groups. SoM was significantly higher for YW and MAW compared to OW (both p < 0.01). An age × velocity interaction revealed YW KE endurance was similar between conditions, whereas MAW and OW displayed significantly better endurance during the 60 deg/s condition. OW displayed impaired KE endurance at 240 deg/s (vs. YW and MAW, p < 0.01) but improved at 60 deg/s (vs. YW, p < 0.01). Dynamic torque decline increased with age (YW < OW, p = 0.03) and was associated with intramuscular adipose tissue (r = 0.21, p = 0.04). CONCLUSIONS: Performance declines were most evident among OW, but few performance deficits had emerged in MAW. Interestingly, strength declines disappeared after normalizing to mCSA and endurance appears to be velocity-dependent.


Subject(s)
Aging , Hand Strength , Adult , Female , Humans , Knee , Middle Aged , Muscle Strength , Muscle, Skeletal , Young Adult
10.
J Feline Med Surg ; 23(6): 507-512, 2021 06.
Article in English | MEDLINE | ID: mdl-33030097

ABSTRACT

OBJECTIVES: The purpose of this study was to analyse and compare morphometric measurements of the temporomandibular joint (TMJ) in two groups of cats with brachycephalic and mesocephalic craniofacial skull conformations using multislice CT and cone beam CT. METHODS: CT records of 20 cats without TMJ pathology were included in the study, and were divided into two groups according to those with mesocephalic or brachycephalic skull conformation. Width and depth of the mandibular fossa, width and height of the head of the mandible, and two different angles were measured in 40 TMJs. RESULTS: TMJ conformation differed between groups: 3/6 parameters were statistically different. Brachycephalic cats had a significantly narrower mandibular fossa, a shorter head of the mandible and a wider angle of congruence (angle 2). CONCLUSIONS AND RELEVANCE: The results provide morphometric measurements that can serve as a reference tool for the veterinary radiologist and surgeon when TMJ evaluation is necessary. Moreover, the study identified significant differences between the two craniofacial skull conformations.


Subject(s)
Cone-Beam Computed Tomography , Temporomandibular Joint , Animals , Cats , Cone-Beam Computed Tomography/veterinary , Mandible , Temporomandibular Joint/diagnostic imaging
11.
Physiol Behav ; 229: 113219, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33250152

ABSTRACT

BACKGROUND: Low-load resistance exercise with blood flow restriction (LLBFR-RE) has been shown capable of improving neuromuscular parameters in several clinical populations, however, its tolerability and effects on individuals with multiple sclerosis (MS) remains unknown. OBJECTIVE: To investigate the perceptual responses of individuals with MS to LLBFR-RE versus traditional high-load resistance exercise (HL-RE). METHODS: Four men and eleven women diagnosed with relapsing-remitting MS randomly completed the following experimental trials: 1) LLBFR-RE four sets of 30-15-15-15 repetitions, at 20% of one-repetition maximum (1-RM) of leg-press (LP) and knee-extension (KE), with 50% of BFR, and a 1-min rest interval between sets; 2) HL-RE- four sets of 8-10 repetitions, at 70% 1-RM of LP and KE, with the same rest intervals. Ratings of perceived exertion (RPE) were measured after each set, pain was measured before and after sets, and delayed-onset muscle soreness (DOMS) was measured at 5, 30, 60 min, and 24-h post-exercise. RESULTS: HL-RE elicited significantly (p<0.05) greater RPE compared to LLBFR-RE during all sets. Additionally, there were no significant (p>0.05) differences between LLBFR-RE and HL-RE for pain immediately after all sets, although pain measured before sets were significantly (p<0.05) greater for LLBFR-RE. Finally, both protocols resulted in similar DOMS, however, it was significantly (p<0.05) elevated 24-h post-exercise compared to 1-h after for HL-RE but not for LLBFR-RE. CONCLUSION: Altogether, these data demonstrate that LLBFR-RE is well tolerated by individuals with MS, requires less muscular exertion than HL-RE, and does not cause exaggerated pain during exercise or elevated DOMS up to 24 h post-exercise.


Subject(s)
Multiple Sclerosis , Resistance Training , Exercise , Female , Hemodynamics , Humans , Male , Muscle, Skeletal , Regional Blood Flow
13.
Biol Sex Differ ; 11(1): 59, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33109241

ABSTRACT

BACKGROUND: Ischemic preconditioning (IPC) is suggested to decrease fatigability in some individuals but not others. Sex differences in response to IPC may account for this variability and few studies systematically investigated the effects of IPC in men and women. The goal of this study was to determine if time to task failure, perception of pain, and neuromuscular mechanisms of fatigability were altered by IPC in men and women. METHODS: Ten women (29 ± 5 years old) and 10 men (28 ± 6 years old) performed isometric contractions with the plantar flexor muscles of the dominant leg at 20% of maximal voluntary contraction until task failure. We used a repeated measures design where each individual performed 3 randomized and counterbalanced test sessions: (A) IPC session, cuff inflation and deflation (5 min each repeated 3 times) performed before the exercise by inflating cuffs to the non-dominant leg and arm; (B) sham session, cuffs were inflated for a short period (1 min); and (C) control session, no cuffs were involved. RESULTS: Compared with control, IPC increased time to task failure in men (mean difference, 5 min; confidence interval (CI) of mean difference, 2.2; 7.8 min; P = 0.01) but not women (mean difference, - 0.6 min; CI of mean difference, - 3.5; 2.4 min; P = 0.51). In men, but not women, the IPC-induced increase in time to task failure was associated with lower response to pressure pain (r = - 0.79). IPC further exposed sex differences in arterial pressure during fatiguing contractions (session × sex: P < 0.05). Voluntary activation, estimated with the twitch interpolation technique, and presynaptic inhibition of leg Ia afferents were not altered after IPC for men and women. The tested variables were not altered with sham. CONCLUSIONS: The ergogenic effect of IPC on time to task failure was observed only in men and it was associated with reductions in the perception of pain. This pilot data suggest the previously reported inter-individual variability in exercise-induced fatigability after IPC could be a consequence of the sex and individual response to pain.


Subject(s)
Ischemic Preconditioning , Muscle Fatigue/physiology , Adult , Blood Pressure , Female , Humans , Male , Pain , Sex Factors , Young Adult
14.
Front Physiol ; 11: 517, 2020.
Article in English | MEDLINE | ID: mdl-32670076

ABSTRACT

Estrogen and progesterone have distinct concentrations across the menstrual cycle, each one promoting several physiological alterations other than preparing the uterus for pregnancy. Whether these physiological alterations can influence motor output during a fatiguing contraction is the goal of this review, with an emphasis on the obtained effect sizes. Studies on this topic frequently attempt to report if there is a statistically significant difference in fatigability between the follicular and luteal phases of the menstrual cycle. Although the significant difference (the P-value) can inform the probability of the event, it does not indicate the magnitude of it. We also investigated whether the type of task performed (e.g., isometric vs. dynamic) can further influence the magnitude by which exercise-induced fatigue changes with fluctuations in the concentration of ovarian hormones. We retrieved experimental studies in eumenorrheic women published between 1975 and 2019. The initial search yielded 921 studies, and after manual refinement, 46 experimental studies that reported metrics of motor output in both the follicular and luteal phases of the menstrual cycle were included. From these retrieved studies, 15 showed a statistical difference between the luteal and follicular phases (seven showing less fatigability during the luteal phase and eight during the follicular phase). The effect size was not consistent across studies and with a large range (-6.77; 1.61, favoring the luteal and follicular phase, respectively). The inconsistencies across studies may be a consequence of the differences in the limb used during the fatiguing contraction (upper vs. lower extremity), the type of contraction (isometric vs. dynamic), the muscle mass engaged (single limb vs. full body), and the techniques used to define the menstrual cycle phase (e.g., serum concentration vs. reported day of menses). Further studies are required to determine the effects of a regular menstrual cycle phase on the exercise-induced fatigability.

15.
J Appl Physiol (1985) ; 126(4): 1056-1065, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30817244

ABSTRACT

A cognitive challenge when imposed during a low-force isometric contraction will exacerbate sex- and age-related decreases in force steadiness, but the mechanism is not known. We determined the role of oscillations in the common synaptic input to motor units on force steadiness during a muscle contraction with a concurrent cognitive challenge. Forty-nine young adults (19-30 yr; 25 women, 24 men) and 36 old adults (60-85 yr; 19 women, 17 men) performed a cognitive challenge (counting backward by 13) during an isometric elbow flexion task at 5% of maximal voluntary contraction. Single-motor units were decomposed from high-density surface EMG recordings. For a subgroup of participants, motor units were matched during control and cognitive challenge trials, so the same motor unit was analyzed across conditions. Reduced force steadiness was associated with greater oscillations in the synaptic input to motor units during both control and cognitive challenge trials ( r = 0.45-0.47, P < 0.01). Old adults and young women showed greater oscillations in the common synaptic input to motor units and decreased force steadiness when the cognitive challenge was imposed, but young men showed no change across conditions (session × age × sex, P < 0.05). Oscillations in the common synaptic input to motor units is a potential mechanism for altered force steadiness when a cognitive challenge is imposed during low-force contractions in young women and old adults. NEW & NOTEWORTHY We found that oscillations in the common synaptic input to motor units were associated with a reduction in force steadiness when a cognitive challenge was imposed during low-force contractions of the elbow flexor muscles in young women and old men and women but not young men. Age- and sex-related muscle weakness was associated with these changes.


Subject(s)
Aging/physiology , Cognition/physiology , Motor Neurons/physiology , Adult , Aged , Elbow/physiology , Electromyography/methods , Female , Humans , Isometric Contraction/physiology , Male , Muscle Strength/physiology , Muscle, Skeletal/physiology , Young Adult
16.
Front Physiol ; 9: 1316, 2018.
Article in English | MEDLINE | ID: mdl-30333758

ABSTRACT

Motor performance and cognitive function both decline with aging. Older adults for example are usually less steady for a constant-force task than young adults when performing low-intensity contractions with limb muscles. Healthy older adults can also show varying degrees of cognitive decline, particularly in executive function skills. It is not known, however, whether age-related changes in steadiness of low-force tasks and cognitive function are independent of one another. In this study, we determined if executive function skills in aging are associated with the steadiness during a low-force muscle contraction performed with and without the imposition of a cognitive challenge. We recruited 60 older adults (60-85 years old, 34 women, 26 men) and 48 young adults (19-30 years old, 24 women, 24 men) to perform elbow flexor muscle contractions at 5% of maximal voluntary contraction (MVC) force in the presence and absence of a difficult mental-math task (counting backward by 13 from a four-digit number). Force steadiness was quantified as the coefficient of variation (CV) of force and executive function was estimated with the Trail-making Test part A and B. The cognitive challenge increased the CV of force (i.e., decreased force steadiness) with greater changes in older adults than young adults (5.2 vs. 1.3%, respectively, cognitive challenge × age: P < 0.001). Older adults were 35% slower in both parts A and B of the Trail-making Test (P < 0.001), and to eliminate the effects of age and education on this variable, all further analyses were performed with the age-corrected z-scores for each individual using established normative values. Hierarchical regression models indicated that decreased force steadiness during a cognitive challenge trial was in part, explained by the performance in the Trail-making Test part A and B in older (r = 0.53 and 0.50, respectively, P < 0.05), but not in young adults (P > 0.05). Thus, healthy community-dwelling older adults, who have poorer executive function skills, exhibit reduced force steadiness during tasks when also required to perform a high cognitive demand task, and are likely at risk of reduced capacity to perform daily activities that involve cognitively challenging motor tasks.

17.
Med Sci Sports Exerc ; 50(5): 1070-1083, 2018 05.
Article in English | MEDLINE | ID: mdl-29298217

ABSTRACT

PURPOSE: The purpose of this study was to determine whether supraspinal mechanisms contribute to the sex difference in fatigability during and recovery from a dynamic and isometric fatiguing task with the knee extensors. METHODS: Transcranial magnetic stimulation and electrical stimulation were used to determine voluntary activation and contractile properties of the knee extensors in 14 men and 17 women (20.8 ± 1.9 yr) after a 1) 60-s sustained, maximal voluntary isometric contraction (MVIC), and 2) dynamic fatiguing task involving 120 maximal voluntary concentric contractions with a 20% MVIC load. RESULTS: There were no differences between men and women in the reduction of maximal torque during the sustained MVIC (54.4% ± 18.9% vs 55.9% ± 11.2%, P = 0.49) or in the decrease in power during the dynamic fatiguing task (14.7% ± 20.1% vs 14.2% ± 18.5%, P = 0.92). However, MVIC torque recovered more quickly for women than men after the sustained MVIC and the dynamic task (P < 0.05). The transcranial magnetic stimulation-elicited superimposed twitch was larger for men than for women during the sustained MVIC and in recovery (immediately post, R0.1: 4.7% ± 3.3% vs 2.4% ± 1.9% MVIC; P = 0.02), with no sex difference after the dynamic task (P = 0.35). The reduction in resting twitch amplitude was larger for men than for women immediately after the dynamic task (37% ± 22% vs 23% ± 18%; P = 0.016) with no sex difference after the sustained MVIC (64% ± 16% vs 67% ± 11%; P = 0.46). CONCLUSIONS: Supraspinal fatigue contributed to fatigability of the knee extensors more for men than for women after a maximal isometric task, whereas contractile mechanisms explained the sex difference in torque recovery after the fast-velocity dynamic task. The mechanisms for the sex difference in fatigability are task dependent.


Subject(s)
Isometric Contraction , Muscle Fatigue , Muscle, Skeletal/physiology , Sex Characteristics , Electric Stimulation , Female , Humans , Knee , Male , Torque , Transcranial Magnetic Stimulation , Young Adult
18.
J Appl Physiol (1985) ; 121(4): 982-995, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27516536

ABSTRACT

Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.


Subject(s)
Aging/physiology , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Neural Conduction/physiology , Psychomotor Performance/physiology , Aged , Aged, 80 and over , Evidence-Based Medicine , Female , Frail Elderly , Humans , Male , Muscle Strength/physiology
19.
Clin Orthop Relat Res ; 473(8): 2568-77, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25712862

ABSTRACT

BACKGROUND: Muscle fatigability can increase when a stressful, cognitively demanding task is imposed during a low-force fatiguing contraction with the arm muscles, especially in women. Whether this occurs among older adults (>60 years) is currently unknown. QUESTIONS/PURPOSES: We aimed to determine if higher cognitive demands, stratified by sex, increased fatigability in older adults (>60 years). Secondarily, we assessed if varying cognitive demand resulted in decreased steadiness and was explained by anxiety or cortisol levels. METHODS: Seventeen older women (70±6 years) and 13 older men (71±5 years) performed a sustained, isometric, fatiguing contraction at 20% of maximal voluntary contraction until task failure during three sessions: high cognitive demand (high CD=mental subtraction by 13); low cognitive demand (low CD=mental subtraction by 1); and control (no subtraction). RESULTS: Fatigability was greater when high and low CD were performed during the fatiguing contraction for the women but not for the men. In women, time to failure with high CD was 16±8 minutes and with low CD was 17±4 minutes, both of which were shorter than time to failure in control contractions (21±7 minutes; high CD mean difference: 5 minutes [95% confidence interval {CI}, 0.78-9.89], p=0.02; low CD mean difference: 4 minutes [95% CI, 0.57-7.31], p=0.03). However, in men, no differences were detected in time to failure with cognitive demand (control: 13±5 minutes; high CD mean difference: -0.09 minutes [95% CI, -2.8 to 2.7], p=1.00; low CD mean difference: 0.75 minutes [95% CI, -1.1 to 2.6], p=0.85). Steadiness decreased (force fluctuations increased) more during high CD than control. Elevated anxiety, mean arterial pressure, and salivary cortisol levels in both men and women did not explain the greater fatigability during high CD. CONCLUSIONS: Older women but not men showed marked increases in fatigability when low or high CD was imposed during sustained static contractions with the elbow flexor muscles and contrasts with previous findings for the lower limb. Steadiness decreased in both sexes when high CD was imposed. CLINICAL RELEVANCE: Older women are susceptible to greater fatigability of the upper limb with heightened mental activity during sustained postural contractions, which are the foundation of many work-related tasks.


Subject(s)
Aging/psychology , Cognition , Isometric Contraction , Muscle Fatigue , Muscle, Skeletal/physiology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Age Factors , Aged , Anxiety/physiopathology , Anxiety/psychology , Arterial Pressure , Biomechanical Phenomena , Female , Heart Rate , Humans , Hydrocortisone/metabolism , Male , Mathematical Concepts , Middle Aged , Risk Factors , Saliva/metabolism , Sex Factors , Stress, Psychological/metabolism , Time Factors , Torque , Upper Extremity
20.
Eur J Appl Physiol ; 115(6): 1367-79, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25633070

ABSTRACT

PURPOSE: These studies determined (1) age- and sex-related differences in steadiness of isometric contractions when high cognitive demand was imposed across a range of forces with the elbow flexor muscles (study 1) and; (2) sex differences in steadiness among older adults when low cognitive demand was imposed (study 2). METHODS: 36 young adults (18-25 years; 18 women) and 30 older adults (60-82 years; 17 women) performed isometric contractions at 5, 30 and 40 % of maximum voluntary contraction (MVC). Study 1 involved a high-cognitive demand session (serial subtractions by 13 during the contraction) and a control session (no mental math). Study 2 (older adults only) involved a low-cognitive demand session (subtracting by 1s). RESULTS: Older individuals exhibited greater increases in force fluctuations (coefficient of variation of force, CV) with high cognitive demand than young adults, with the largest age difference at 5 % MVC (P = 0.01). Older adults had greater agonist EMG activity with high-cognitive demand and women had greater coactivation than men (P < 0.05). In study 2, CV of force increased with low cognitive demand for the older women but not for the older men (P = 0.03). CONCLUSION: Older adults had reduced steadiness and increased muscle activation when high cognitive demand was imposed while low cognitive demand induced increased force fluctuations in older women but not older men. These findings have implications for daily and work-related tasks that involve cognitive demand performed simultaneously during submaximal isometric contractions in an aging workforce.


Subject(s)
Cognition , Isometric Contraction , Muscle Strength , Muscle, Skeletal/physiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Anxiety/physiopathology , Elbow/physiology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/growth & development , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...