Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 103(11): 5231-5241, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37021557

ABSTRACT

BACKGROUND: Mesotrione is a triketone widely used as an inhibitor of the hydroxyphenylpyruvate deoxygenase (HPPD) enzyme. However, new agrochemicals should be developed continuously to tackle the problem of herbicide resistance. Two sets of mesotrione analogs have been synthesized recently and they have demonstrated successful phytotoxicity against weeds. In this study, these compounds were joined to form a single data set and the HPPD inhibition of this enlarged library of triketones was modeled using multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR). Docking studies were also carried out to validate the MIA-QSAR findings and to aid the interpretation of ligand-enzyme interactions responsible for the bioactivity (pIC50 ). RESULTS: The MIA-QSAR models based on van der Waals radii (rvdW ), electronegativity (ε), and the rvdW /ε ratio as molecular descriptors were both predictive to an acceptable degree (r2 ≥ 0.80, q2 ≥ 0.68 and r2 pred ≥ 0.68). Subsequently, partial least squares (PLS) regression parameters were applied to predict the pIC50 values of newly proposed derivatives, yielding a few promising agrochemical candidates. The calculated log P for most of these derivatives was found to be higher than that of mesotrione and the library compounds, indicating that they should be less prone to leach out and contaminate groundwater. CONCLUSION: Multivariate image analysis descriptors corroborated by docking studies were capable of modeling the herbicidal activities of 68 triketones reliably. Due to the substituent effects at the triketone framework, particularly of a nitro group in R3 , promising analogs could be designed. The P9 proposal demonstrated higher calculated activity and log P than commercial mesotrione. © 2023 Society of Chemical Industry.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Quantitative Structure-Activity Relationship , Molecular Structure , Structure-Activity Relationship , Enzyme Inhibitors/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism
2.
J Biomol Struct Dyn ; 41(9): 3772-3778, 2023 06.
Article in English | MEDLINE | ID: mdl-35343864

ABSTRACT

Benzamide herbicides consist of a class of photosynthetic system II (PSII) inhibitors widely used for weed control. However, the development of resistance by these weeds to the known herbicides requires an ongoing search for new agrochemicals. We report the combination of two congeneric series of (thio)benzamide herbicides into a single data set and subsequent modeling of their herbicidal activities against PSII using MIA-QSAR. The robust and predictive models were used to estimate the pIC50 of new agrochemical candidates, which were proposed based on a chemical mixing of the substructures of the most active compounds present in the data set. The chemical features affecting the herbicidal activities were analyzed using MIA contour maps, whereas the ligand-enzyme interactions responsible for the binding affinities were rationalized through docking studies. The proposed compound possessing a thiobenzamide moiety and C-11 chain, H, NO2, OH, and OH as variable substituents was the most promising alternative.Communicated by Ramaswamy H. Sarma.


Subject(s)
Herbicides , Herbicides/pharmacology , Herbicides/chemistry , Quantitative Structure-Activity Relationship , Benzamides/pharmacology , Benzamides/chemistry
3.
Bull Environ Contam Toxicol ; 108(6): 1019-1025, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35076719

ABSTRACT

Chlorinated agrochemicals play a major role in toxicity due especially to the labile C - Cl bond and high lipophilicity of organochlorines. In turn, urea and thiourea herbicides are widely used for weed control. A series of substituted N-benzoyl-N'-pyrimidin-2-yl thioureas has been recently synthesized and tested against Brassica napus L., demonstrating promising herbicidal activities, particularly for chlorinated derivatives. We have therefore modeled these activities using multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) to find out a significant and reliable correlation between measured and predicted inhibition of B. napus L. root growth (%) and, ultimately, to propose effective, non-chlorinated and/or less lipophilic N-(4-methanesulfonyl)benzoyl-N'-(pyrimidin-2-yl)thiourea candidates. The model was found to be predictive, giving an average r2pred in the external validation of 0.833. The predicted data for the proposed herbicides, interpreted in terms of MIA-plots of the chemical moieties responsible for bioactivity and supported by docking studies towards the photosystem II enzyme, suggest that substituents at both R1 and R2 positions modulate the agrochemical (R1 = Cl increases and R2 = OR decreases bioactivity) and environmental friendship (particularly with R2 = OH) performances of this class of compounds.


Subject(s)
Herbicides , Quantitative Structure-Activity Relationship , Herbicides/chemistry , Herbicides/toxicity , Photosystem II Protein Complex , Thiourea , Urea
SELECTION OF CITATIONS
SEARCH DETAIL
...